BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

877 related articles for article (PubMed ID: 25582117)

  • 1. Contamination and release of nanomaterials associated with the use of personal protective clothing.
    Tsai CS
    Ann Occup Hyg; 2015 May; 59(4):491-503. PubMed ID: 25582117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication.
    Shepard MN; Brenner S
    Ann Occup Hyg; 2014 Mar; 58(2):251-65. PubMed ID: 24284882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency of five chemical protective clothing materials against nano and submicron aerosols when submitted to mechanical deformations.
    Ben Salah M; Hallé S; Tuduri L
    J Occup Environ Hyg; 2016; 13(6):425-33. PubMed ID: 26786065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies.
    Brouwer DH; Gijsbers JH; Lurvink MW
    Ann Occup Hyg; 2004 Jul; 48(5):439-53. PubMed ID: 15240340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emission rates and the personal cloud effect associated with particle release from the perihuman environment.
    Licina D; Tian Y; Nazaroff WW
    Indoor Air; 2017 Jul; 27(4):791-802. PubMed ID: 28009455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery.
    Miller A; Drake PL; Hintz P; Habjan M
    Ann Occup Hyg; 2010 Jul; 54(5):504-13. PubMed ID: 20403942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes.
    Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH
    Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerosol resuspension from fabric: implications for personal monitoring in the beryllium industry.
    Bohne JE; Cohen BS
    Am Ind Hyg Assoc J; 1985 Feb; 46(2):73-9. PubMed ID: 3976498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of take-home exposure and risk associated with the handling of clothing contaminated with chrysotile asbestos.
    Sahmel J; Barlow CA; Simmons B; Gaffney SH; Avens HJ; Madl AK; Henshaw J; Lee RJ; Van Orden D; Sanchez M; Zock M; Paustenbach DJ
    Risk Anal; 2014 Aug; 34(8):1448-68. PubMed ID: 24517168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhalation exposure during spray application and subsequent sanding of a wood sealant containing zinc oxide nanoparticles.
    Cooper MR; West GH; Burrelli LG; Dresser D; Griffin KN; Segrave AM; Perrenoud J; Lippy BE
    J Occup Environ Hyg; 2017 Jul; 14(7):510-522. PubMed ID: 28406371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety.
    Peters TM; Elzey S; Johnson R; Park H; Grassian VH; Maher T; O'Shaughnessy P
    J Occup Environ Hyg; 2009 Feb; 6(2):73-81. PubMed ID: 19034793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Nanotube Emissions from Arc Discharge Production: Classification of Particle Types with Electron Microscopy and Comparison with Direct Reading Techniques.
    Ludvigsson L; Isaxon C; Nilsson PT; Tinnerberg H; Messing ME; Rissler J; Skaug V; Gudmundsson A; Bohgard M; Hedmer M; Pagels J
    Ann Occup Hyg; 2016 May; 60(4):493-512. PubMed ID: 26748380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clothing as a transport vector for airborne particles: Chamber study.
    Licina D; Nazaroff WW
    Indoor Air; 2018 May; 28(3):404-414. PubMed ID: 29444354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment.
    Fujitani Y; Kobayashi T; Arashidani K; Kunugita N; Suemura K
    J Occup Environ Hyg; 2008 Jun; 5(6):380-9. PubMed ID: 18401789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unintended emission of nanoparticle aerosols during common laboratory handling operations.
    Gomez V; Irusta S; Balas F; Navascues N; Santamaria J
    J Hazard Mater; 2014 Aug; 279():75-84. PubMed ID: 25038576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the potential airborne release of carbon nanofibers during the preparation, grinding, and cutting of epoxy-based nanocomposite material.
    Methner M; Crawford C; Geraci C
    J Occup Environ Hyg; 2012; 9(5):308-18. PubMed ID: 22545869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Airborne asbestos take-home exposures during handling of chrysotile-contaminated clothing following simulated full shift workplace exposures.
    Sahmel J; Barlow CA; Gaffney S; Avens HJ; Madl AK; Henshaw J; Unice K; Galbraith D; DeRose G; Lee RJ; Van Orden D; Sanchez M; Zock M; Paustenbach DJ
    J Expo Sci Environ Epidemiol; 2016; 26(1):48-62. PubMed ID: 25921082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metrological assessment of a portable analyzer for monitoring the particle size distribution of ultrafine particles.
    Stabile L; Cauda E; Marini S; Buonanno G
    Ann Occup Hyg; 2014 Aug; 58(7):860-76. PubMed ID: 24817159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A recirculation aerosol wind tunnel for evaluating aerosol samplers and measuring particle penetration through protective clothing materials.
    Jaques PA; Hsiao TC; Gao P
    Ann Occup Hyg; 2011 Aug; 55(7):784-96. PubMed ID: 21831849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A laboratory study of the performance of the handheld diffusion size classifier (DiSCmini) for various aerosols in the 15-400 nm range.
    Bau S; Zimmermann B; Payet R; Witschger O
    Environ Sci Process Impacts; 2015 Feb; 17(2):261-9. PubMed ID: 25366997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.