These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25582166)

  • 1. Tunable electrophoretic separations using a scalable, fabric-based platform.
    Narahari T; Dendukuri D; Murthy SK
    Anal Chem; 2015 Feb; 87(4):2480-7. PubMed ID: 25582166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 'Fab-chips': a versatile, fabric-based platform for low-cost, rapid and multiplexed diagnostics.
    Bhandari P; Narahari T; Dendukuri D
    Lab Chip; 2011 Aug; 11(15):2493-9. PubMed ID: 21735030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sample injection and electrophoretic separation on a simple laminated paper based analytical device.
    Xu C; Zhong M; Cai L; Zheng Q; Zhang X
    Electrophoresis; 2016 Feb; 37(3):476-81. PubMed ID: 26542435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of microfluidic flow in amphiphilic fabrics.
    Owens TL; Leisen J; Beckham HW; Breedveld V
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3796-803. PubMed ID: 21942403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple device for multiplexed electrophoretic separations using gradient elution moving boundary electrophoresis with channel current detection.
    Ross D; Kralj JG
    Anal Chem; 2008 Dec; 80(24):9467-74. PubMed ID: 19007187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joule Heating-Induced Dispersion in Open Microfluidic Electrophoretic Cytometry.
    Vlassakis J; Herr AE
    Anal Chem; 2017 Dec; 89(23):12787-12796. PubMed ID: 29110464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gradient elution moving boundary electrophoresis for high-throughput multiplexed microfluidic devices.
    Shackman JG; Munson MS; Ross D
    Anal Chem; 2007 Jan; 79(2):565-71. PubMed ID: 17222021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous microfluidic DNA and protein trapping and concentration by balancing transverse electrokinetic forces.
    Morales MC; Lin H; Zahn JD
    Lab Chip; 2012 Jan; 12(1):99-108. PubMed ID: 22045330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of polyacrylamide gel moving boundary electrophoresis to enable low-power protein analysis in a compact microdevice.
    Duncombe TA; Herr AE
    Anal Chem; 2012 Oct; 84(20):8740-7. PubMed ID: 22971048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational study of velocity profile obtained in microfluidic channel bearing a fluidic transistor: toward highly resolved electrophoretic separation.
    Charhrouchni I; Pallandre A; Le Potier I; Deslouis C; Haghiri-Gosnet AM
    Electrophoresis; 2013 Mar; 34(5):725-35. PubMed ID: 23254905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophoretic Separations on Parafilm-Paper-Based Analytical Devices.
    Mettakoonpitak J; Henry CS
    Sens Actuators B Chem; 2018 Nov; 273():1022-1028. PubMed ID: 32863586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topographic structures and chromatographic supports in microfluidic separation devices.
    De Pra M; Kok WT; Schoenmakers PJ
    J Chromatogr A; 2008 Mar; 1184(1-2):560-72. PubMed ID: 18028936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tandem isotachophoresis-zone electrophoresis via base-mediated destacking for increased detection sensitivity in microfluidic systems.
    Vreeland WN; Williams SJ; Barron AE; Sassi AP
    Anal Chem; 2003 Jul; 75(13):3059-65. PubMed ID: 12964751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic devices for electrokinetic sample fractionation.
    Wang Z; Taylor J; Jemere AB; Harrison DJ
    Electrophoresis; 2010 Aug; 31(15):2575-83. PubMed ID: 20665916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrically-Actuated Valves for Woven Fabric Lateral Flow Devices.
    Narahari T; Dendukuri D; Murthy SK
    Anal Chem; 2017 Apr; 89(8):4671-4679. PubMed ID: 28337914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent developments in electrophoretic separations on microfluidic devices.
    Kenyon SM; Meighan MM; Hayes MA
    Electrophoresis; 2011 Feb; 32(5):482-93. PubMed ID: 21290388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic flow counterbalanced capillary electrophoresis.
    Xia L; Dutta D
    Analyst; 2013 Apr; 138(7):2126-33. PubMed ID: 23420375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic microfluidic platform for cell separation and nucleus collection.
    Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet-interfaced microchip and capillary electrophoretic separations.
    Niu X; Pereira F; Edel JB; de Mello AJ
    Anal Chem; 2013 Sep; 85(18):8654-60. PubMed ID: 23957576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.