BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25582303)

  • 1. A genetically encoded Förster resonance energy transfer sensor for monitoring in vivo trehalose-6-phosphate dynamics.
    Peroza EA; Ewald JC; Parakkal G; Skotheim JM; Zamboni N
    Anal Biochem; 2015 Apr; 474():1-7. PubMed ID: 25582303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis.
    Bonini BM; Van Vaeck C; Larsson C; Gustafsson L; Ma P; Winderickx J; Van Dijck P; Thevelein JM
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):261-8. PubMed ID: 10926852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for trehalose-6-phosphate-dependent and -independent mechanisms in the control of sugar influx into yeast glycolysis.
    Hohmann S; Bell W; Neves MJ; Valckx D; Thevelein JM
    Mol Microbiol; 1996 Jun; 20(5):981-91. PubMed ID: 8809751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis and modification of trehalose 6-phosphate levels in the yeast Saccharomyces cerevisiae with the use of Bacillus subtilis phosphotrehalase.
    van Vaeck C; Wera S; van Dijck P; Thevelein JM
    Biochem J; 2001 Jan; 353(Pt 1):157-162. PubMed ID: 11115409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FRET sensor-based quantification of intracellular trehalose in mammalian cells.
    Kikuta S; Hou BH; Sato R; Frommer WB; Kikawada T
    Biosci Biotechnol Biochem; 2016; 80(1):162-5. PubMed ID: 26214383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trehalose metabolism: a regulatory role for trehalose-6-phosphate?
    Eastmond PJ; Graham IA
    Curr Opin Plant Biol; 2003 Jun; 6(3):231-5. PubMed ID: 12753972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Gustafsson L
    Yeast; 2000 Jun; 16(9):797-809. PubMed ID: 10861904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells.
    Ameen S; Ahmad M; Mohsin M; Qureshi MI; Ibrahim MM; Abdin MZ; Ahmad A
    J Nanobiotechnology; 2016 Jun; 14(1):49. PubMed ID: 27334743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic phenotypes of Saccharomyces cerevisiae mutants with altered trehalose 6-phosphate dynamics.
    Walther T; Mtimet N; Alkim C; Vax A; Loret MO; Ullah A; Gancedo C; Smits GJ; François JM
    Biochem J; 2013 Sep; 454(2):227-37. PubMed ID: 23763276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases.
    Blázquez MA; Lagunas R; Gancedo C; Gancedo JM
    FEBS Lett; 1993 Aug; 329(1-2):51-4. PubMed ID: 8354408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana.
    Leyman B; Van Dijck P; Thevelein JM
    Trends Plant Sci; 2001 Nov; 6(11):510-3. PubMed ID: 11701378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Starting up yeast glycolysis.
    Gonçalves P; Planta RJ
    Trends Microbiol; 1998 Aug; 6(8):314-9. PubMed ID: 9746941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Affinity Series of Genetically Encoded Förster Resonance Energy-Transfer Sensors for Sucrose.
    Sadoine M; Reger M; Wong KM; Frommer WB
    ACS Sens; 2021 May; 6(5):1779-1784. PubMed ID: 33974799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting yeast trehalose metabolism.
    Eleutherio E; Panek A; De Mesquita JF; Trevisol E; Magalhães R
    Curr Genet; 2015 Aug; 61(3):263-74. PubMed ID: 25209979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells.
    Mohsin M; Ahmad A
    Biosens Bioelectron; 2014 Sep; 59():358-64. PubMed ID: 24752146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trehalose-6-phosphate hydrolase of Escherichia coli.
    Rimmele M; Boos W
    J Bacteriol; 1994 Sep; 176(18):5654-64. PubMed ID: 8083158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The growth and signalling defects of the ggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII.
    Hohmann S; Neves MJ; de Koning W; Alijo R; Ramos J; Thevelein JM
    Curr Genet; 1993; 23(4):281-9. PubMed ID: 8467527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trehalose-6-phosphate synthesis controls yeast gluconeogenesis downstream and independent of SNF1.
    Deroover S; Ghillebert R; Broeckx T; Winderickx J; Rolland F
    FEMS Yeast Res; 2016 Jun; 16(4):. PubMed ID: 27189362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent protein-based FRET sensor for intracellular monitoring of redox status in bacteria at single cell level.
    Abraham BG; Santala V; Tkachenko NV; Karp M
    Anal Bioanal Chem; 2014 Nov; 406(28):7195-204. PubMed ID: 25224640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sugar signals and molecular networks controlling plant growth.
    Smeekens S; Ma J; Hanson J; Rolland F
    Curr Opin Plant Biol; 2010 Jun; 13(3):274-9. PubMed ID: 20056477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.