These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 25582400)
1. PET(CO2) measurement and feature extraction of capnogram signals for extubation outcomes from mechanical ventilation. Rasera CC; Gewehr PM; Domingues AM Physiol Meas; 2015 Feb; 36(2):231-42. PubMed ID: 25582400 [TBL] [Abstract][Full Text] [Related]
2. Capnogram slope and ventilation dead space parameters: comparison of mainstream and sidestream techniques. Balogh AL; Petak F; Fodor GH; Tolnai J; Csorba Z; Babik B Br J Anaesth; 2016 Jul; 117(1):109-17. PubMed ID: 27317710 [TBL] [Abstract][Full Text] [Related]
3. A mainstream monitoring system for respiratory CO2 concentration and gasflow. Yang J; Chen B; Burk K; Wang H; Zhou J J Clin Monit Comput; 2016 Aug; 30(4):467-73. PubMed ID: 26178886 [TBL] [Abstract][Full Text] [Related]
4. [Simultaneous measurements of end-expiratory and transcutaneous carbon dioxide partial pressure in ventilated premature and newborn infants]. Arsowa S; Schmalisch G; Wauer RR Klin Padiatr; 1997; 209(2):47-53. PubMed ID: 9198671 [TBL] [Abstract][Full Text] [Related]
5. Spontaneous minute ventilation is a predictor of extubation failure in extremely-low-birth-weight infants. Vento G; Tortorolo L; Zecca E; Rosano A; Matassa PG; Papacci P; Romagnoli C J Matern Fetal Neonatal Med; 2004 Mar; 15(3):147-54. PubMed ID: 15280139 [TBL] [Abstract][Full Text] [Related]
6. Extubation failure in infants with shunt-dependent pulmonary blood flow and univentricular physiology. Gupta P; McDonald R; Goyal S; Gossett JM; Imamura M; Agarwal A; Butt W; Bhutta AT Cardiol Young; 2014 Feb; 24(1):64-72. PubMed ID: 23328580 [TBL] [Abstract][Full Text] [Related]
7. A novel method of distal end-tidal CO2 capnography in intubated infants: comparison with arterial CO2 and with proximal mainstream end-tidal CO2. Kugelman A; Zeiger-Aginsky D; Bader D; Shoris I; Riskin A Pediatrics; 2008 Dec; 122(6):e1219-24. PubMed ID: 19029196 [TBL] [Abstract][Full Text] [Related]
8. [A multicenter study of respiratory multiple index in predicting weaning from mechanical ventilation in patients with acute exacerbation of chronic obstructive pulmonary disease]. Li ZB; Gao XJ; Wang DH; Zhang B; Zhang ZP; Hu ZM; Xu L; Qin YZ Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2013 Jun; 25(6):339-42. PubMed ID: 23739566 [TBL] [Abstract][Full Text] [Related]
9. Comparisons of predictive performance of breathing pattern variability measured during T-piece, automatic tube compensation, and pressure support ventilation for weaning intensive care unit patients from mechanical ventilation. Bien MY; Shui Lin Y; Shih CH; Yang YL; Lin HW; Bai KJ; Wang JH; Ru Kou Y Crit Care Med; 2011 Oct; 39(10):2253-62. PubMed ID: 21666447 [TBL] [Abstract][Full Text] [Related]
10. Risk factors for extubation failure in infants with severe acute bronchiolitis. Johnston C; de Carvalho WB; Piva J; Garcia PC; Fonseca MC Respir Care; 2010 Mar; 55(3):328-33. PubMed ID: 20196883 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of an oxygen mask-based capnometry device in subjects extubated after abdominal surgery. Takaki S; Mihara T; Mizutani K; Yamaguchi O; Goto T Respir Care; 2015 May; 60(5):705-10. PubMed ID: 25587160 [TBL] [Abstract][Full Text] [Related]
12. Transcutaneous monitoring of partial pressure of carbon dioxide in the elderly patient: a prospective, clinical comparison with end-tidal monitoring. Casati A; Squicciarini G; Malagutti G; Baciarello M; Putzu M; Fanelli A J Clin Anesth; 2006 Sep; 18(6):436-40. PubMed ID: 16980160 [TBL] [Abstract][Full Text] [Related]
13. Compliance of the respiratory system as a predictor for successful extubation in very-low-birth-weight infants recovering from respiratory distress syndrome. Smith J; Pieper CH; Maree D; Gie RP S Afr Med J; 1999 Oct; 89(10):1097-102. PubMed ID: 10582068 [TBL] [Abstract][Full Text] [Related]
14. Predictors of successful extubation of preterm low-birth-weight infants with respiratory distress syndrome. Szymankiewicz M; Vidyasagar D; Gadzinowski J Pediatr Crit Care Med; 2005 Jan; 6(1):44-9. PubMed ID: 15636658 [TBL] [Abstract][Full Text] [Related]
15. An analysis of CO Ochi G; Takasaki Y; Yorozuya T; Nakashita Y; Kuzume K; Nagaro T; Arai T J Anesth; 1994 Jun; 8(2):172-177. PubMed ID: 28921139 [TBL] [Abstract][Full Text] [Related]
16. Accurate and stable continuous monitoring module by mainstream capnography. Yang J; Wang H; Wang B; Wang L J Clin Monit Comput; 2014 Aug; 28(4):363-9. PubMed ID: 24311023 [TBL] [Abstract][Full Text] [Related]
17. A decision-tree model for predicting extubation outcome in elderly patients after a successful spontaneous breathing trial. Liu Y; Wei LQ; Li GQ; Lv FY; Wang H; Zhang YH; Cao WL Anesth Analg; 2010 Nov; 111(5):1211-8. PubMed ID: 20841406 [TBL] [Abstract][Full Text] [Related]
18. Diagnostic accuracy of capnography during high-frequency ventilation in neonatal intensive care units. Kugelman A; Bromiker R; Riskin A; Shoris I; Ronen M; Qumqam N; Bader D; Golan A Pediatr Pulmonol; 2016 May; 51(5):510-6. PubMed ID: 26422449 [TBL] [Abstract][Full Text] [Related]
19. Quantitative analysis of end-tidal carbon dioxide during mechanical and spontaneous ventilation in infants and young children. Hsieh KS; Lee CL; Lin CC; Wu SN; Ko FY; Huang YF; Huang TC Pediatr Pulmonol; 2001 Dec; 32(6):453-8. PubMed ID: 11747249 [TBL] [Abstract][Full Text] [Related]
20. Carbon dioxide monitoring in the newborn infant. Williams E; Dassios T; Greenough A Pediatr Pulmonol; 2021 Oct; 56(10):3148-3156. PubMed ID: 34365738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]