BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 25582950)

  • 21. Non-electrophilic modulators of the canonical Keap1/Nrf2 pathway.
    Richardson BG; Jain AD; Speltz TE; Moore TW
    Bioorg Med Chem Lett; 2015 Jun; 25(11):2261-8. PubMed ID: 25937010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution.
    Taguchi K; Motohashi H; Yamamoto M
    Genes Cells; 2011 Feb; 16(2):123-40. PubMed ID: 21251164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy.
    Shibata T; Ohta T; Tong KI; Kokubu A; Odogawa R; Tsuta K; Asamura H; Yamamoto M; Hirohashi S
    Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13568-73. PubMed ID: 18757741
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Keap1-Nrf2 Interaction Suppresses Cell Motility in Lung Adenocarcinomas by Targeting the S100P Protein.
    Chien MH; Lee WJ; Hsieh FK; Li CF; Cheng TY; Wang MY; Chen JS; Chow JM; Jan YH; Hsiao M; Hua KT; Kuo ML
    Clin Cancer Res; 2015 Oct; 21(20):4719-32. PubMed ID: 26078391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peptide inhibitors of the Keap1-Nrf2 protein-protein interaction.
    Hancock R; Bertrand HC; Tsujita T; Naz S; El-Bakry A; Laoruchupong J; Hayes JD; Wells G
    Free Radic Biol Med; 2012 Jan; 52(2):444-51. PubMed ID: 22107959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1.
    Eggler AL; Small E; Hannink M; Mesecar AD
    Biochem J; 2009 Jul; 422(1):171-80. PubMed ID: 19489739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discovery of the negative regulator of Nrf2, Keap1: a historical overview.
    Itoh K; Mimura J; Yamamoto M
    Antioxid Redox Signal; 2010 Dec; 13(11):1665-78. PubMed ID: 20446768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2.
    Sun Z; Zhang S; Chan JY; Zhang DD
    Mol Cell Biol; 2007 Sep; 27(18):6334-49. PubMed ID: 17636022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MicroRNA-200a controls Nrf2 activation by target Keap1 in hepatic stellate cell proliferation and fibrosis.
    Yang JJ; Tao H; Hu W; Liu LP; Shi KH; Deng ZY; Li J
    Cell Signal; 2014 Nov; 26(11):2381-9. PubMed ID: 25049078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) drug discovery: Biochemical toolbox to develop NRF2 activators by reversible binding of Kelch-like ECH-associated protein 1 (KEAP1).
    Bresciani A; Missineo A; Gallo M; Cerretani M; Fezzardi P; Tomei L; Cicero DO; Altamura S; Santoprete A; Ingenito R; Bianchi E; Pacifici R; Dominguez C; Munoz-Sanjuan I; Harper S; Toledo-Sherman L; Park LC
    Arch Biochem Biophys; 2017 Oct; 631():31-41. PubMed ID: 28801166
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural analysis of the complex of Keap1 with a prothymosin alpha peptide.
    Padmanabhan B; Nakamura Y; Yokoyama S
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 Apr; 64(Pt 4):233-8. PubMed ID: 18391415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acetyl-l-carnitine prevents homocysteine-induced suppression of Nrf2/Keap1 mediated antioxidation in human lens epithelial cells.
    Yang SP; Yang XZ; Cao GP
    Mol Med Rep; 2015 Jul; 12(1):1145-50. PubMed ID: 25776802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Select heterozygous Keap1 mutations have a dominant-negative effect on wild-type Keap1 in vivo.
    Suzuki T; Maher J; Yamamoto M
    Cancer Res; 2011 Mar; 71(5):1700-9. PubMed ID: 21177379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nrf2: friend and foe in preventing cigarette smoking-dependent lung disease.
    Müller T; Hengstermann A
    Chem Res Toxicol; 2012 Sep; 25(9):1805-24. PubMed ID: 22686525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discovery of potent Keap1-Nrf2 protein-protein interaction inhibitor based on molecular binding determinants analysis.
    Jiang ZY; Lu MC; Xu LL; Yang TT; Xi MY; Xu XL; Guo XK; Zhang XJ; You QD; Sun HP
    J Med Chem; 2014 Mar; 57(6):2736-45. PubMed ID: 24512214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cancer-derived mutations in KEAP1 impair NRF2 degradation but not ubiquitination.
    Hast BE; Cloer EW; Goldfarb D; Li H; Siesser PF; Yan F; Walter V; Zheng N; Hayes DN; Major MB
    Cancer Res; 2014 Feb; 74(3):808-17. PubMed ID: 24322982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Signaling pathways activated by the phytochemical nordihydroguaiaretic acid contribute to a Keap1-independent regulation of Nrf2 stability: Role of glycogen synthase kinase-3.
    Rojo AI; Medina-Campos ON; Rada P; Zúñiga-Toalá A; López-Gazcón A; Espada S; Pedraza-Chaverri J; Cuadrado A
    Free Radic Biol Med; 2012 Jan; 52(2):473-87. PubMed ID: 22142471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of the Nrf2/Keap1/ARE signaling system.
    Tkachev VO; Menshchikova EB; Zenkov NK
    Biochemistry (Mosc); 2011 Apr; 76(4):407-22. PubMed ID: 21585316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cytoprotection against beta-amyloid (Aβ) peptide-mediated oxidative damage and autophagy by Keap1 RNAi in human glioma U87mg cells.
    Youn P; Chen Y; Furgeson DY
    Neurosci Res; 2015 May; 94():70-8. PubMed ID: 25612817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.