BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 25583581)

  • 1. Production of reproductively sterile fish: A mini-review of germ cell elimination technologies.
    Wong TT; Zohar Y
    Gen Comp Endocrinol; 2015 Sep; 221():3-8. PubMed ID: 25583581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of reproductively sterile fish by a non-transgenic gene silencing technology.
    Wong TT; Zohar Y
    Sci Rep; 2015 Oct; 5():15822. PubMed ID: 26510515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rescue of germ cells in dnd crispant embryos opens the possibility to produce inherited sterility in Atlantic salmon.
    Güralp H; Skaftnesmo KO; Kjærner-Semb E; Straume AH; Kleppe L; Schulz RW; Edvardsen RB; Wargelius A
    Sci Rep; 2020 Oct; 10(1):18042. PubMed ID: 33093479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of all-male-like sterile zebrafish by eliminating primordial germ cells at early development.
    Zhou L; Feng Y; Wang F; Dong X; Jiang L; Liu C; Zhao Q; Li K
    Sci Rep; 2018 Jan; 8(1):1834. PubMed ID: 29382876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Germ cell transplantation as a potential biotechnological approach to fish reproduction.
    Lacerda SM; Costa GM; Campos-Junior PH; Segatelli TM; Yazawa R; Takeuchi Y; Morita T; Yoshizaki G; França LR
    Fish Physiol Biochem; 2013 Feb; 39(1):3-11. PubMed ID: 22290474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of Germ-Line Chimeras in Zebrafish.
    Saito T; Goto R; Rivers N; Yamaha E
    Methods Mol Biol; 2019; 1920():327-341. PubMed ID: 30737701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A controllable on-off strategy for the reproductive containment of fish.
    Zhang Y; Chen J; Cui X; Luo D; Xia H; Dai J; Zhu Z; Hu W
    Sci Rep; 2015 Jan; 5():7614. PubMed ID: 25556821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved mechanisms for germ cell-specific localization of nanos3 transcripts in teleost species with aquaculture significance.
    Škugor A; Slanchev K; Torgersen JS; Tveiten H; Andersen Ø
    Mar Biotechnol (NY); 2014 Jun; 16(3):256-64. PubMed ID: 24091820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. It is the economy, stupid! Projecting the fate of fish populations using ecological-economic modeling.
    Quaas MF; Reusch TB; Schmidt JO; Tahvonen O; Voss R
    Glob Chang Biol; 2016 Jan; 22(1):264-70. PubMed ID: 26348787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sexual development in fish, practical applications for aquaculture.
    Cnaani A; Levavi-Sivan B
    Sex Dev; 2009; 3(2-3):164-75. PubMed ID: 19684460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How can plant genetic engineering contribute to cost-effective fish vaccine development for promoting sustainable aquaculture?
    Clarke JL; Waheed MT; Lössl AG; Martinussen I; Daniell H
    Plant Mol Biol; 2013 Sep; 83(1-2):33-40. PubMed ID: 23729352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Reproductive Sciences in the Preservation and Breeding of Commercial and Threatened Teleost Fishes.
    Mayer I
    Adv Exp Med Biol; 2019; 1200():187-224. PubMed ID: 31471798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of Thiaminase in Zebrafish (Danio rerio) is Lethal and Has Implications for Use as a Biocontainment Strategy in Aquaculture and Invasive Species.
    Noble S; Saxena V; Ekker M; Devlin R
    Mar Biotechnol (NY); 2017 Dec; 19(6):563-569. PubMed ID: 28980193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing public involvement in enriching our fish stocks through genetic enhancement.
    Halvorson HO; Quezada F
    Genet Anal; 1999 Nov; 15(3-5):75-84. PubMed ID: 10596744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PROTEOMICS in aquaculture: applications and trends.
    Rodrigues PM; Silva TS; Dias J; Jessen F
    J Proteomics; 2012 Jul; 75(14):4325-45. PubMed ID: 22498885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current and future assisted reproductive technologies for fish species.
    Weber GM; Lee CS
    Adv Exp Med Biol; 2014; 752():33-76. PubMed ID: 24170354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A state-of-the-art review of surrogate propagation in fish.
    Goto R; Saito T
    Theriogenology; 2019 Jul; 133():216-227. PubMed ID: 31155037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fish reproductive biology - Reflecting on five decades of fundamental and translational research.
    Zohar Y
    Gen Comp Endocrinol; 2021 Jan; 300():113544. PubMed ID: 32615136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental health impacts of feeding crops to farmed fish.
    Fry JP; Love DC; MacDonald GK; West PC; Engstrom PM; Nachman KE; Lawrence RS
    Environ Int; 2016 May; 91():201-14. PubMed ID: 26970884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vulnerabilities in aquatic animal production.
    Subasinghe RP; Delamare-Deboutteville J; Mohan CV; Phillips MJ
    Rev Sci Tech; 2019 Sep; 38(2):423-436. PubMed ID: 31866684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.