These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 25583864)

  • 1. Aspects of structural health and condition monitoring of offshore wind turbines.
    Antoniadou I; Dervilis N; Papatheou E; Maguire AE; Worden K
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural health monitoring of jacket-type support structures in offshore wind turbines: A comprehensive dataset for bolt loosening detection through vibrational analysis.
    Valdez-Yepez R; Tutivén C; Vidal Y
    Data Brief; 2024 Apr; 53():110222. PubMed ID: 38435727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Destructive Techniques for the Condition and Structural Health Monitoring of Wind Turbines: A Literature Review of the Last 20 Years.
    Civera M; Surace C
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential visibility, growth, and technological innovation in offshore wind turbines installed in Europe.
    Bilgili M; Alphan H; Ilhan A
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):27208-27226. PubMed ID: 36378387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of damage detection methods using passive reconstruction of impulse response functions.
    Tippmann JD; Zhu X; Lanza di Scalea F
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foundations for offshore wind turbines.
    Byrne BW; Houlsby GT
    Philos Trans A Math Phys Eng Sci; 2003 Dec; 361(1813):2909-30. PubMed ID: 14667305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrosion threshold data of metallic materials in various operating environment of offshore wind turbine parts (tower, foundation, and nacelle/gearbox).
    Ahuir-Torres JI; Simandjuntak S; Bausch N; Farrar A; Webb S; Nash A; Thomas B; Muna J; Jonsson C; Matthew D
    Data Brief; 2019 Aug; 25():104207. PubMed ID: 31440542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prognosis of a Wind Turbine Gearbox Bearing Using Supervised Machine Learning.
    Elasha F; Shanbr S; Li X; Mba D
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions.
    Xu BF; Wang TG; Yuan Y; Cao JF
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New perspectives in offshore wind energy.
    Failla G; Arena F
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibration Analysis for Fault Detection of Wind Turbine Drivetrains-A Comprehensive Investigation.
    Teng W; Ding X; Tang S; Xu J; Shi B; Liu Y
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33804512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibration-Response-Only Structural Health Monitoring for Offshore Wind Turbine Jacket Foundations via Convolutional Neural Networks.
    Puruncajas B; Vidal Y; Tutivén C
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32560533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wind turbine icing characteristics and icing-induced power losses to utility-scale wind turbines.
    Gao L; Hu H
    Proc Natl Acad Sci U S A; 2021 Oct; 118(42):. PubMed ID: 34635597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the responses of coastal cetaceans to the construction of offshore wind turbines.
    Thompson PM; Lusseau D; Barton T; Simmons D; Rusin J; Bailey H
    Mar Pollut Bull; 2010 Aug; 60(8):1200-8. PubMed ID: 20413133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability of multi-purpose offshore-facilities: Present status and future direction in Australia.
    Aryai V; Abbassi R; Abdussamie N; Salehi F; Garaniya V; Asadnia M; Baksh AA; Penesis I; Karampour H; Draper S; Magee A; Keng AK; Shearer C; Sivandran S; Yew LK; Cook D; Underwood M; Martini A; Heasman K; Abrahams J; Wang CM
    Process Saf Environ Prot; 2021 Apr; 148():437-461. PubMed ID: 33071474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging trends in vibration control of wind turbines: a focus on a dual control strategy.
    Staino A; Basu B
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design.
    Matha D; Sandner F; Molins C; Campos A; Cheng PW
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential impacts of floating wind turbine technology for marine species and habitats.
    Maxwell SM; Kershaw F; Locke CC; Conners MG; Dawson C; Aylesworth S; Loomis R; Johnson AF
    J Environ Manage; 2022 Apr; 307():114577. PubMed ID: 35091240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and Simulation of Offshore Wind Power Platform for 5 MW Baseline NREL Turbine.
    Roni Sahroni T
    ScientificWorldJournal; 2015; 2015():819384. PubMed ID: 26550605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the hurricane risk to offshore wind turbines.
    Rose S; Jaramillo P; Small MJ; Grossmann I; Apt J
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3247-52. PubMed ID: 22331894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.