BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 25583977)

  • 1. Mutations within the mepA operator affect binding of the MepR regulatory protein and its induction by MepA substrates in Staphylococcus aureus.
    Schindler BD; Seo SM; Birukou I; Brennan RG; Kaatz GW
    J Bacteriol; 2015 Mar; 197(6):1104-14. PubMed ID: 25583977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional consequences of substitution mutations in MepR, a repressor of the Staphylococcus aureus MepA multidrug efflux pump gene.
    Schindler BD; Seo SM; Jacinto PL; Kumaraswami M; Birukou I; Brennan RG; Kaatz GW
    J Bacteriol; 2013 Aug; 195(16):3651-62. PubMed ID: 23749979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MepR, a repressor of the Staphylococcus aureus MATE family multidrug efflux pump MepA, is a substrate-responsive regulatory protein.
    Kaatz GW; DeMarco CE; Seo SM
    Antimicrob Agents Chemother; 2006 Apr; 50(4):1276-81. PubMed ID: 16569840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular mechanisms of allosteric mutations impairing MepR repressor function in multidrug-resistant strains of Staphylococcus aureus.
    Birukou I; Tonthat NK; Seo SM; Schindler BD; Kaatz GW; Brennan RG
    mBio; 2013 Aug; 4(5):e00528-13. PubMed ID: 23982071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and biochemical characterization of MepR, a multidrug binding transcription regulator of the Staphylococcus aureus multidrug efflux pump MepA.
    Kumaraswami M; Schuman JT; Seo SM; Kaatz GW; Brennan RG
    Nucleic Acids Res; 2009 Mar; 37(4):1211-24. PubMed ID: 19129225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural mechanism of transcription regulation of the Staphylococcus aureus multidrug efflux operon mepRA by the MarR family repressor MepR.
    Birukou I; Seo SM; Schindler BD; Kaatz GW; Brennan RG
    Nucleic Acids Res; 2014 Feb; 42(4):2774-88. PubMed ID: 24293644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efflux-mediated bis-indole resistance in Staphylococcus aureus reveals differential substrate specificities for MepA and MepR.
    Opperman TJ; Williams JD; Houseweart C; Panchal RG; Bavari S; Peet NP; Moir DT; Bowlin TL
    Bioorg Med Chem; 2010 Mar; 18(6):2123-2130. PubMed ID: 20188576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline.
    McAleese F; Petersen P; Ruzin A; Dunman PM; Murphy E; Projan SJ; Bradford PA
    Antimicrob Agents Chemother; 2005 May; 49(5):1865-71. PubMed ID: 15855508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein.
    Kaatz GW; McAleese F; Seo SM
    Antimicrob Agents Chemother; 2005 May; 49(5):1857-64. PubMed ID: 15855507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic changes associated with tigecycline resistance in Staphylococcus aureus in vitro-selected mutants belonging to different lineages.
    Herrera M; Gregorio SD; Haim MS; Posse G; Mollerach M; Di Conza J
    Int J Antimicrob Agents; 2021 Apr; 57(4):106304. PubMed ID: 33588015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tigecycline Resistance-Associated Mutations in the MepA Efflux Pump in Staphylococcus aureus.
    Huang H; Wan P; Luo X; Lu Y; Li X; Xiong W; Zeng Z
    Microbiol Spectr; 2023 Aug; 11(4):e0063423. PubMed ID: 37432114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in the MepRAB efflux system contribute to the in vitro development of tigecycline resistance in Staphylococcus aureus.
    Fang R; Sun Y; Dai W; Zheng X; Tian X; Zhang X; Wang C; Cao J; Zhou T
    J Glob Antimicrob Resist; 2020 Sep; 22():631-636. PubMed ID: 32590185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for cooperative DNA binding by two dimers of the multidrug-binding protein QacR.
    Schumacher MA; Miller MC; Grkovic S; Brown MH; Skurray RA; Brennan RG
    EMBO J; 2002 Mar; 21(5):1210-8. PubMed ID: 11867549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate binding to the multidrug transporter MepA.
    Banchs C; Poulos S; Nimjareansuk WS; Joo YE; Faham S
    Biochim Biophys Acta; 2014 Oct; 1838(10):2539-46. PubMed ID: 24967747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SmtB-DNA and protein-protein interactions in the formation of the cyanobacterial metallothionein repression complex: Zn2+ does not dissociate the protein-DNA complex in vitro.
    Kar SR; Lebowitz J; Blume S; Taylor KB; Hall LM
    Biochemistry; 2001 Nov; 40(44):13378-89. PubMed ID: 11683648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure analysis of Bacillus cereus MepR-like transcription regulator, BC0657, in complex with pseudo-ligand molecules.
    Kim MI; Cho MU; Hong M
    Biochem Biophys Res Commun; 2015 Mar; 458(3):644-649. PubMed ID: 25684184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutagenesis and modeling to predict structural and functional characteristics of the Staphylococcus aureus MepA multidrug efflux pump.
    Schindler BD; Patel D; Seo SM; Kaatz GW
    J Bacteriol; 2013 Feb; 195(3):523-33. PubMed ID: 23175649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of the palindromic order of the TtgR operator enhances binding cooperativity.
    Krell T; Terán W; Mayorga OL; Rivas G; Jiménez M; Daniels C; Molina-Henares AJ; Martínez-Bueno M; Gallegos MT; Ramos JL
    J Mol Biol; 2007 Jun; 369(5):1188-99. PubMed ID: 17498746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of promoter region mutations and mgrA overexpression on transcription of norA, which encodes a Staphylococcus aureus multidrug efflux transporter.
    Kaatz GW; Thyagarajan RV; Seo SM
    Antimicrob Agents Chemother; 2005 Jan; 49(1):161-9. PubMed ID: 15616291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A thermodynamic model of the cooperative interaction between the archaeal transcription factor Ss-LrpB and its tripartite operator DNA.
    Peeters E; van Oeffelen L; Nadal M; Forterre P; Charlier D
    Gene; 2013 Jul; 524(2):330-40. PubMed ID: 23603352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.