BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25584118)

  • 1. Measurement and control of pressure driven flows in microfluidic devices using an optofluidic flow sensor.
    Cheri MS; Shahraki H; Sadeghi J; Moghaddam MS; Latifi H
    Biomicrofluidics; 2014 Sep; 8(5):054123. PubMed ID: 25584118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor.
    Cheri MS; Latifi H; Sadeghi J; Moghaddam MS; Shahraki H; Hajghassem H
    Analyst; 2014 Jan; 139(2):431-8. PubMed ID: 24291805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-Printed micro-optofluidic device for chemical fluids and cells detection.
    Cairone F; Davi S; Stella G; Guarino F; Recca G; Cicala G; Bucolo M
    Biomed Microdevices; 2020 May; 22(2):37. PubMed ID: 32419044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time Measurement of Refractive Index Using 3D-Printed Optofluidic Fiber Sensor.
    Leça JM; Magalhães Y; Antunes P; Pereira V; Ferreira MS
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography.
    Song W; Psaltis D
    Opt Express; 2010 Aug; 18(16):16561-6. PubMed ID: 20721045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication, characterization, and simulation of a cantilever-based airflow sensor integrated with optical fiber.
    Cheri MS; Latifi H; Aghbolagh FB; Naeini OR; Taghavi M; Ghaderi M
    Appl Opt; 2013 May; 52(14):3420-7. PubMed ID: 23669859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lensfree optofluidic microscopy and tomography.
    Bishara W; Isikman SO; Ozcan A
    Ann Biomed Eng; 2012 Feb; 40(2):251-62. PubMed ID: 21887590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On chip optofluidic low-pressure monitoring device.
    Chandra Roy A; Bangalore Subramanya S; Manohar Rudresh S; Venkataraman V
    J Biophotonics; 2021 Mar; 14(3):e202000381. PubMed ID: 33169514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems.
    Lv C; Xia H; Guan W; Sun YL; Tian ZN; Jiang T; Wang YS; Zhang YL; Chen QD; Ariga K; Yu YD; Sun HB
    Sci Rep; 2016 Jan; 6():19801. PubMed ID: 26823292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Microfluidic-Based Fabry-Pérot Gas Sensor.
    Tao J; Zhang Q; Xiao Y; Li X; Yao P; Pang W; Zhang H; Duan X; Zhang D; Liu J
    Micromachines (Basel); 2016 Feb; 7(3):. PubMed ID: 30407409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and numerical simulation of an optofluidic pressure sensor.
    Ebnali-Heidari M; Mansouri M; Mokhtarian S; Moravvej-Farshi MK
    Appl Opt; 2012 Jun; 51(16):3387-96. PubMed ID: 22695574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optofluidic microbubble Fabry-Pérot cavity.
    Chen X; Zhao X; Guo Z; Fu L; Lu Q; Xie S; Wu X
    Opt Express; 2020 May; 28(10):15161-15172. PubMed ID: 32403548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optofluidic Fabry-Pérot Micro-Cavities Comprising Curved Surfaces for Homogeneous Liquid Refractometry-Design, Simulation, and Experimental Performance Assessment.
    Gaber N; Sabry YM; Marty F; Bourouina T
    Micromachines (Basel); 2016 Apr; 7(4):. PubMed ID: 30407435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Projection Micro-Stereolithography to Manufacture a Biocompatible Micro-Optofluidic Device for Cell Concentration Monitoring.
    Saitta L; Cutuli E; Celano G; Tosto C; Sanalitro D; Guarino F; Cicala G; Bucolo M
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities.
    Wang W; Zhou C; Zhang T; Chen J; Liu S; Fan X
    Lab Chip; 2015 Oct; 15(19):3862-9. PubMed ID: 26304622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconfigurable RGB dye lasers based on the laminar flow control in an optofluidic chip.
    Kong Y; Dai H; He X; Zheng Y; Chen X
    Opt Lett; 2018 Sep; 43(18):4461-4464. PubMed ID: 30211890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-in-fiber optofluidic sensor fabricated by femtosecond laser assisted chemical etching.
    Yuan L; Huang J; Lan X; Wang H; Jiang L; Xiao H
    Opt Lett; 2014 Apr; 39(8):2358-61. PubMed ID: 24978992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optofluidic membrane interferometer: An imaging method for measuring microfluidic pressure and flow rate simultaneously on a chip.
    Song W; Psaltis D
    Biomicrofluidics; 2011 Dec; 5(4):44110-4411011. PubMed ID: 22662062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photothermally generated bubble on fiber (BoF) for precise sensing and control of liquid flow along a microfluidic channel.
    Ma J; Wang G; Jin L; Oh K; Guan BO
    Opt Express; 2019 Jul; 27(14):19768-19777. PubMed ID: 31503732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.