BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25584118)

  • 41. PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices.
    Pullano SA; Mahbub I; Islam SK; Fiorillo AS
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28406447
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions.
    Wang N; Tan F; Zhao Y; Tsoi CC; Fan X; Yu W; Zhang X
    Sci Rep; 2016 Jun; 6():28928. PubMed ID: 27352840
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Polymeric optofluidic Fabry-Perot sensor by direct laser machining and hot embossing.
    Wu J; Day D; Gu M
    Appl Opt; 2011 May; 50(13):1843-9. PubMed ID: 21532662
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Femtosecond laser processing for optofluidic fabrication.
    Sugioka K; Cheng Y
    Lab Chip; 2012 Oct; 12(19):3576-89. PubMed ID: 22820547
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Self-mixing laser Doppler flow sensor: an optofluidic implementation.
    Nikolić M; Hicks E; Lim YL; Bertling K; Rakić AD
    Appl Opt; 2013 Nov; 52(33):8128-33. PubMed ID: 24513768
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On-Channel Integrated Optofluidic Pressure Sensor with Optically Boosted Sensitivity.
    Gaber N; Altayyeb A; Soliman SA; Sabry YM; Marty F; Bourouina T
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813389
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optical micro/nanofibre embedded soft film enables multifunctional flow sensing in microfluidic chips.
    Zhang Z; Pan J; Tang Y; Xu Y; Zhang L; Gong Y; Tong L
    Lab Chip; 2020 Jul; 20(14):2572-2579. PubMed ID: 32573608
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Theoretical analysis and measurement of the temperature dependence of a micromachined Fabry-Perot pressure sensor.
    Guo D; Wang W; Lin R
    Appl Opt; 2005 Jan; 44(2):249-56. PubMed ID: 15678778
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis.
    Surdo S; Merlo S; Carpignano F; Strambini LM; Trono C; Giannetti A; Baldini F; Barillaro G
    Lab Chip; 2012 Nov; 12(21):4403-15. PubMed ID: 22930245
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microfluidic refractive index sensor based on an all-silica in-line Fabry-Perot interferometer fabricated with microstructured fibers.
    Tian J; Lu Y; Zhang Q; Han M
    Opt Express; 2013 Mar; 21(5):6633-9. PubMed ID: 23482235
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamic Measurement of Nanoflows: Realization of an Optofluidic Flow Meter to the Nanoliter-per-Minute Scale.
    Cooksey GA; Patrone PN; Hands JR; Meek SE; Kearsley AJ
    Anal Chem; 2019 Aug; 91(16):10713-10722. PubMed ID: 31393105
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design and Fabrication of a Tunable Optofluidic Microlens Driven by an Encircled Thermo-Pneumatic Actuator.
    Zhang W; Li H; Zou Y; Zhao P; Li Z
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014111
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spatiotemporal pattern of glucose in a microfluidic device depend on the porosity and permeability of the medium: A finite element study.
    Bonifácio ED; González-Torres LA; Meireles AB; Guimarães MV; Araujo CA
    Comput Methods Programs Biomed; 2019 Dec; 182():105039. PubMed ID: 31472476
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A microfluidic device based on an evaporation-driven micropump.
    Nie C; Frijns AJ; Mandamparambil R; den Toonder JM
    Biomed Microdevices; 2015 Apr; 17(2):47. PubMed ID: 25804609
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design and fabrication of a novel on-chip pressure sensor for microchannels.
    Raventhiran N; Molla RS; Nandishwara K; Johnson E; Li Y
    Lab Chip; 2022 Nov; 22(22):4306-4316. PubMed ID: 36128992
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Long-range optofluidic control with plasmon heating.
    Ciraulo B; Garcia-Guirado J; de Miguel I; Ortega Arroyo J; Quidant R
    Nat Commun; 2021 Mar; 12(1):2001. PubMed ID: 33790293
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Digital nanoliter to milliliter flow rate sensor with in vivo demonstration for continuous sweat rate measurement.
    Francis J; Stamper I; Heikenfeld J; Gomez EF
    Lab Chip; 2018 Dec; 19(1):178-185. PubMed ID: 30525141
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Continuous and Real-Time Detection of Drinking-Water Pathogens with a Low-Cost Fluorescent Optofluidic Sensor.
    Simões J; Dong T
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29996477
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An electrochemical-sensor system for real-time flow measurements in porous materials.
    Bathany C; Han JR; Abi-Samra K; Takayama S; Cho YK
    Biosens Bioelectron; 2015 Aug; 70():115-21. PubMed ID: 25797850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.