These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25584118)

  • 61. Optofluidic pressure sensor based on interferometric imaging.
    Song W; Psaltis D
    Opt Lett; 2010 Nov; 35(21):3604-6. PubMed ID: 21042364
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Optical spectral sweep comb liquid flow rate sensor.
    Shen C; Lian X; Kavungal V; Zhong C; Liu D; Semenova Y; Farrell G; Albert J; Donegan JF
    Opt Lett; 2018 Feb; 43(4):751-754. PubMed ID: 29444069
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Tunable micro-optofluidic prism based on liquid-core liquid-cladding configuration.
    Song C; Nguyen NT; Asundi AK; Tan SH
    Opt Lett; 2010 Feb; 35(3):327-9. PubMed ID: 20125710
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Optofluidic ultrahigh-throughput detection of fluorescent drops.
    Kim M; Pan M; Gai Y; Pang S; Han C; Yang C; Tang SK
    Lab Chip; 2015 Mar; 15(6):1417-23. PubMed ID: 25588522
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Tunable self-imaging effect using hybrid optofluidic waveguides.
    Shi Y; Liang L; Zhu XQ; Zhang XM; Yang Y
    Lab Chip; 2015 Dec; 15(23):4398-403. PubMed ID: 26463108
    [TBL] [Abstract][Full Text] [Related]  

  • 66. 3D Printing Manufacturing of Polydimethyl-Siloxane/Zinc Oxide Micro-Optofluidic Device for Two-Phase Flows Control.
    Stella G; Barcellona M; Saitta L; Tosto C; Cicala G; Gulino A; Bucolo M; Fragalà ME
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631994
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure.
    Xia J; Wang F; Luo H; Wang Q; Xiong S
    Sensors (Basel); 2016 Apr; 16(5):. PubMed ID: 27136564
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Diaphragm-Free Fiber-Optic Fabry-Perot Interferometric Gas Pressure Sensor for High Temperature Application.
    Liang H; Jia P; Liu J; Fang G; Li Z; Hong Y; Liang T; Xiong J
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29597325
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An Integrated Optofluidic Platform Enabling Total Phosphorus On-Chip Digestion and Online Real-Time Detection.
    Li C; Wang B; Wan H; He R; Li Q; Yang S; Dai W; Wang N
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31906410
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A three-dimensional non-hydrostatic coupled model for free surface - Subsurface variable - Density flows.
    Shokri N; Namin MM; Farhoudi J
    J Contam Hydrol; 2018 Sep; 216():38-49. PubMed ID: 30126718
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Comparison of Measurements with Finite-Element Analysis of Silicon-Diaphragm-Based Fiber-Optic Fabry-Perot Temperature Sensors.
    Wang R; Xie X; Xu X; Chen X; Xiao L
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31684134
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Highly sensitive optofluidic chips for biochemical liquid assay fabricated by 3D femtosecond laser micromachining followed by polymer coating.
    Hanada Y; Sugioka K; Midorikawa K
    Lab Chip; 2012 Oct; 12(19):3688-93. PubMed ID: 22814524
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Optic imaging of single and two-phase pressure-driven flows in nano-scale channels.
    Wu Q; Ok JT; Sun Y; Retterer ST; Neeves KB; Yin X; Bai B; Ma Y
    Lab Chip; 2013 Mar; 13(6):1165-71. PubMed ID: 23370894
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Non-spherical particle generation from 4D optofluidic fabrication.
    Paulsen KS; Chung AJ
    Lab Chip; 2016 Aug; 16(16):2987-95. PubMed ID: 27092661
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Optofluidic router based on tunable liquid-liquid mirrors.
    Müller P; Kopp D; Llobera A; Zappe H
    Lab Chip; 2014 Feb; 14(4):737-43. PubMed ID: 24287814
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A Novel Fabry-Pérot Optical Sensor for Guided Wave Signal Acquisition.
    Xu C; Sharif Khodaei Z
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32204566
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Optofluidic-tunable color filters and spectroscopy based on liquid-crystal microflows.
    Cuennet JG; Vasdekis AE; Psaltis D
    Lab Chip; 2013 Jul; 13(14):2721-6. PubMed ID: 23752198
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Highly Integrated All-Fiber FP/FBG Sensor for Accurate Measurement of Strain under High Temperature.
    Yang T; He X; Ran Z; Xie Z; Rao Y; Qiao X; He Z; He P
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30275367
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector.
    Bianco V; Paturzo M; Marchesano V; Gallotta I; Di Schiavi E; Ferraro P
    Lab Chip; 2015 May; 15(9):2117-24. PubMed ID: 25832808
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Optofluidic tweezer on a chip.
    Ono K; Kaneda S; Shiraishi T; Fujii T
    Biomicrofluidics; 2010 Dec; 4(4):43012. PubMed ID: 21267089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.