BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25584426)

  • 1. Formation of 3D cholesterol crystals from 2D nucleation sites in lipid bilayer membranes: implications for atherosclerosis.
    Varsano N; Fargion I; Wolf SG; Leiserowitz L; Addadi L
    J Am Chem Soc; 2015 Feb; 137(4):1601-7. PubMed ID: 25584426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous formation of two-dimensional and three-dimensional cholesterol crystals in single hydrated lipid bilayers.
    Ziblat R; Fargion I; Leiserowitz L; Addadi L
    Biophys J; 2012 Jul; 103(2):255-64. PubMed ID: 22853903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of cholesterol Bilayer Domains Precedes Formation of Cholesterol Crystals in Membranes Made of the Major Phospholipids of Human Eye Lens Fiber Cell Plasma Membranes.
    Mainali L; Pasenkiewicz-Gierula M; Subczynski WK
    Curr Eye Res; 2020 Feb; 45(2):162-172. PubMed ID: 31462080
    [No Abstract]   [Full Text] [Related]  

  • 4. Crystalline domain structure and cholesterol crystal nucleation in single hydrated DPPC:cholesterol:POPC bilayers.
    Ziblat R; Leiserowitz L; Addadi L
    J Am Chem Soc; 2010 Jul; 132(28):9920-7. PubMed ID: 20586463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesterol crystals piercing the arterial plaque and intima trigger local and systemic inflammation.
    Abela GS
    J Clin Lipidol; 2010; 4(3):156-64. PubMed ID: 21122648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of cholesterol crystalline domains in model and biological membranes using X-ray diffraction.
    Mason RP; Jacob RF
    Adv Exp Med Biol; 2015; 842():231-45. PubMed ID: 25408347
    [No Abstract]   [Full Text] [Related]  

  • 7. Ceramide drives cholesterol out of the ordered lipid bilayer phase into the crystal phase in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/cholesterol/ceramide ternary mixtures.
    Ali MR; Cheng KH; Huang J
    Biochemistry; 2006 Oct; 45(41):12629-38. PubMed ID: 17029417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of the Phospholipid Bilayer Environment on Cholesterol Crystal Polymorphism.
    Varsano N; Beghi F; Dadosh T; Elad N; Pereiro E; Haran G; Leiserowitz L; Addadi L
    Chempluschem; 2019 Apr; 84(4):338-344. PubMed ID: 31939214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-sponge-like liposomes remove cholesterol crystals for antiatherosclerosis.
    Gong F; Wang Z; Mo R; Wang Y; Su J; Li X; Omonova CTQ; Khamis AM; Zhang Q; Dong M; Su Z
    J Control Release; 2022 Sep; 349():940-953. PubMed ID: 35870569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viewing atherosclerosis through a crystal lens: How the evolving structure of cholesterol crystals in atherosclerotic plaque alters its stability.
    Nidorf SM; Fiolet A; Abela GS
    J Clin Lipidol; 2020; 14(5):619-630. PubMed ID: 32792218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of protein crystal growth from lipid layers.
    Hemming SA; Bochkarev A; Darst SA; Kornberg RD; Ala P; Yang DS; Edwards AM
    J Mol Biol; 1995 Feb; 246(2):308-16. PubMed ID: 7869382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypothetical Pathway for Formation of Cholesterol Microcrystals Initiating the Atherosclerotic Process.
    Subczynski WK; Pasenkiewicz-Gierula M
    Cell Biochem Biophys; 2020 Sep; 78(3):241-247. PubMed ID: 32602057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trapping crystal nucleation of cholesterol monohydrate: relevance to pathological crystallization.
    Solomonov I; Weygand MJ; Kjaer K; Rapaport H; Leiserowitz L
    Biophys J; 2005 Mar; 88(3):1809-17. PubMed ID: 15596496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galactosylceramide domain microstructure: impact of cholesterol and nucleation/growth conditions.
    Blanchette CD; Lin WC; Ratto TV; Longo ML
    Biophys J; 2006 Jun; 90(12):4466-78. PubMed ID: 16565044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct correlation of structures and nanomechanical properties of multicomponent lipid bilayers.
    Sullan RM; Li JK; Zou S
    Langmuir; 2009 Jul; 25(13):7471-7. PubMed ID: 19292499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticles as agents targeting cholesterol crystallization in atherosclerosis.
    Anfinogenova Y; Shvedova M; Popov SV
    Med Hypotheses; 2017 May; 102():19-22. PubMed ID: 28478823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two polymorphic cholesterol monohydrate crystal structures form in macrophage culture models of atherosclerosis.
    Varsano N; Beghi F; Elad N; Pereiro E; Dadosh T; Pinkas I; Perez-Berna AJ; Jin X; Kruth HS; Leiserowitz L; Addadi L
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7662-7669. PubMed ID: 29967179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic behavior of DNA cages anchored on spherically supported lipid bilayers.
    Conway JW; Madwar C; Edwardson TG; McLaughlin CK; Fahkoury J; Lennox RB; Sleiman HF
    J Am Chem Soc; 2014 Sep; 136(37):12987-97. PubMed ID: 25140890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid membranes with a majority of cholesterol: applications to the ocular lens and aquaporin 0.
    O'Connor JW; Klauda JB
    J Phys Chem B; 2011 May; 115(20):6455-64. PubMed ID: 21539340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.