BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 25584686)

  • 1. Fabrication of shape controllable Janus alginate/pNIPAAm microgels via microfluidics technique and off-chip ionic cross-linking.
    Hu Y; Wang S; Abbaspourrad A; Ardekani AM
    Langmuir; 2015 Feb; 31(6):1885-91. PubMed ID: 25584686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic fabrication of shape-tunable alginate microgels: effect of size and impact velocity.
    Hu Y; Azadi G; Ardekani AM
    Carbohydr Polym; 2015 Apr; 120():38-45. PubMed ID: 25662685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet Microfluidics-Assisted Fabrication of Shape Controllable Iron-Alginate Microgels with Fluorescent Property.
    Chen J; Shen H; Heng Y; Wang S; Ardekani A; Yang Y; Hu Y
    Macromol Rapid Commun; 2024 Apr; ():e2400084. PubMed ID: 38653451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of monodisperse, covalently cross-linked, degradable "smart" microgels using microfluidics.
    Kesselman LR; Shinwary S; Selvaganapathy PR; Hoare T
    Small; 2012 Apr; 8(7):1092-8. PubMed ID: 22354786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.
    Kim S; Oh J; Cha C
    Colloids Surf B Biointerfaces; 2016 Nov; 147():1-8. PubMed ID: 27478957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip preparation of calcium alginate particles based on droplet templates formed by using a centrifugal microfluidic technique.
    Liu M; Sun XT; Yang CG; Xu ZR
    J Colloid Interface Sci; 2016 Mar; 466():20-7. PubMed ID: 26704472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing of fast-gelling hydrogel precursors in microfluidics by electrocoalescence of reactive species.
    Hauck N; Neuendorf TA; Männel MJ; Vogel L; Liu P; Stündel E; Zhang Y; Thiele J
    Soft Matter; 2021 Nov; 17(45):10312-10321. PubMed ID: 34664052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermosensitive ionic microgels via surfactant-free emulsion copolymerization and in situ quaternization cross-linking.
    Zhou X; Zhou Y; Nie J; Ji Z; Xu J; Zhang X; Du B
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4498-513. PubMed ID: 24588095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic production of biopolymer microcapsules with controlled morphology.
    Zhang H; Tumarkin E; Peerani R; Nie Z; Sullan RM; Walker GC; Kumacheva E
    J Am Chem Soc; 2006 Sep; 128(37):12205-10. PubMed ID: 16967971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Janus microgels produced from functional precursor polymers.
    Seiffert S; Romanowsky MB; Weitz DA
    Langmuir; 2010 Sep; 26(18):14842-7. PubMed ID: 20731338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic one-step fabrication of radiopaque alginate microgels with in situ synthesized barium sulfate nanoparticles.
    Wang Q; Zhang D; Xu H; Yang X; Shen AQ; Yang Y
    Lab Chip; 2012 Nov; 12(22):4781-6. PubMed ID: 22992786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics.
    Rossow T; Heyman JA; Ehrlicher AJ; Langhoff A; Weitz DA; Haag R; Seiffert S
    J Am Chem Soc; 2012 Mar; 134(10):4983-9. PubMed ID: 22356466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An
    Wang S; Bruning A; Jeon O; Long F; Alsberg E; Choi CK
    Biomicrofluidics; 2018 Jan; 12(1):014106. PubMed ID: 29375727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of pH-degradable supramacromolecular microgels with tunable size and shape via droplet-based microfluidics.
    Jung SH; Bulut S; Busca Guerzoni LPB; Günther D; Braun S; De Laporte L; Pich A
    J Colloid Interface Sci; 2022 Jul; 617():409-421. PubMed ID: 35279576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-Chip Fabrication of Colloidal Suprastructures by Assembly and Supramolecular Interlinking of Microgels.
    Jung SH; Meyer F; Hörnig S; Bund M; Häßel B; Guerzoni LPB; De Laporte L; Ben Messaoud G; Centeno SP; Pich A
    Small; 2024 Jan; 20(2):e2303444. PubMed ID: 37705132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring a direct injection method for microfluidic generation of polymer microgels.
    Wang Y; Tumarkin E; Velasco D; Abolhasani M; Lau W; Kumacheva E
    Lab Chip; 2013 Jul; 13(13):2547-53. PubMed ID: 23407698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape controllable microgel particles prepared by microfluidic combining external ionic crosslinking.
    Hu Y; Wang Q; Wang J; Zhu J; Wang H; Yang Y
    Biomicrofluidics; 2012 Jun; 6(2):26502-265029. PubMed ID: 22670170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic Fabrication and Applications of Microgels and Hybrid Microgels.
    Farooqi ZH; Vladisavljević GT; Pamme N; Fatima A; Begum R; Irfan A; Chen M
    Crit Rev Anal Chem; 2023 Feb; ():1-15. PubMed ID: 36757081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monodisperse stimuli-responsive colloidosomes by self-assembly of microgels in droplets.
    Shah RK; Kim JW; Weitz DA
    Langmuir; 2010 Feb; 26(3):1561-5. PubMed ID: 19950936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Massive and efficient encapsulation of single cells in monodisperse droplets and collagen-alginate microgels using a microfluidic device.
    Liu D; Xuanyuan T; Liu X; Fu W; Liu W
    Front Bioeng Biotechnol; 2023; 11():1281375. PubMed ID: 38033813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.