BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 25584857)

  • 1. Flexible and stackable laser-induced graphene supercapacitors.
    Peng Z; Lin J; Ye R; Samuel EL; Tour JM
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3414-9. PubMed ID: 25584857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance.
    Ogata C; Kurogi R; Awaya K; Hatakeyama K; Taniguchi T; Koinuma M; Matsumoto Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26151-26160. PubMed ID: 28715632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Boron-Doped Laser-Induced Graphene Microsupercapacitors.
    Peng Z; Ye R; Mann JA; Zakhidov D; Li Y; Smalley PR; Lin J; Tour JM
    ACS Nano; 2015 Jun; 9(6):5868-75. PubMed ID: 25978090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
    Xu Y; Lin Z; Huang X; Liu Y; Huang Y; Duan X
    ACS Nano; 2013 May; 7(5):4042-9. PubMed ID: 23550832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible, Stretchable, and Transparent Planar Microsupercapacitors Based on 3D Porous Laser-Induced Graphene.
    Song W; Zhu J; Gan B; Zhao S; Wang H; Li C; Wang J
    Small; 2018 Jan; 14(1):. PubMed ID: 29148212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.
    Zheng Q; Cai Z; Ma Z; Gong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vertically Aligned Graphene-Carbon Fiber Hybrid Electrodes with Superlong Cycling Stability for Flexible Supercapacitors.
    Cherusseri J; Sambath Kumar K; Pandey D; Barrios E; Thomas J
    Small; 2019 Oct; 15(44):e1902606. PubMed ID: 31512364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector.
    Notarianni M; Liu J; Mirri F; Pasquali M; Motta N
    Nanotechnology; 2014 Oct; 25(43):435405. PubMed ID: 25301789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films.
    Choi BG; Chang SJ; Kang HW; Park CP; Kim HJ; Hong WH; Lee S; Huh YS
    Nanoscale; 2012 Aug; 4(16):4983-8. PubMed ID: 22751863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers.
    Li X; Zhao T; Chen Q; Li P; Wang K; Zhong M; Wei J; Wu D; Wei B; Zhu H
    Phys Chem Chem Phys; 2013 Nov; 15(41):17752-7. PubMed ID: 24045695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors.
    Wang G; Sun X; Lu F; Sun H; Yu M; Jiang W; Liu C; Lian J
    Small; 2012 Feb; 8(3):452-9. PubMed ID: 22162371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metallic Fabrics as the Current Collector for High-Performance Graphene-Based Flexible Solid-State Supercapacitor.
    Yu J; Wu J; Wang H; Zhou A; Huang C; Bai H; Li L
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4724-9. PubMed ID: 26830192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct laser-patterned micro-supercapacitors from paintable MoS2 films.
    Cao L; Yang S; Gao W; Liu Z; Gong Y; Ma L; Shi G; Lei S; Zhang Y; Zhang S; Vajtai R; Ajayan PM
    Small; 2013 Sep; 9(17):2905-10. PubMed ID: 23589515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile and Scalable Fabrication of High-Performance Microsupercapacitors Based on Laser-Scribed
    Yuan M; Luo F; Wang Z; Li H; Rao Y; Yu J; Wang Y; Xie D; Chen X; Wong CP
    ACS Appl Mater Interfaces; 2021 May; 13(19):22426-22437. PubMed ID: 33957749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.
    Kang YJ; Chung H; Han CH; Kim W
    Nanotechnology; 2012 Feb; 23(6):065401. PubMed ID: 22248712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites.
    Yu C; Ma P; Zhou X; Wang A; Qian T; Wu S; Chen Q
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17937-43. PubMed ID: 25247315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel preparation of attapulgite-reduced graphene oxide hydrogel composite and its application in flexible solid-state supercapacitors.
    Huang X; Wu W
    Nanotechnology; 2022 Feb; 33(20):. PubMed ID: 35078160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes.
    Zang X; Li X; Zhu M; Li X; Zhen Z; He Y; Wang K; Wei J; Kang F; Zhu H
    Nanoscale; 2015 Apr; 7(16):7318-22. PubMed ID: 25821068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyaniline-Modified Oriented Graphene Hydrogel Film as the Free-Standing Electrode for Flexible Solid-State Supercapacitors.
    Du P; Liu HC; Yi C; Wang K; Gong X
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23932-40. PubMed ID: 26461080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor.
    Chi K; Zhang Z; Xi J; Huang Y; Xiao F; Wang S; Liu Y
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16312-9. PubMed ID: 25180808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.