These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol. Nishina K; Unno T; Uno Y; Kubodera T; Kanouchi T; Mizusawa H; Yokota T Mol Ther; 2008 Apr; 16(4):734-40. PubMed ID: 18362929 [TBL] [Abstract][Full Text] [Related]
5. Efficient In Vivo Delivery of siRNA to the Liver by Conjugation of α-Tocopherol. Nishina K; Unno T; Uno Y; Kubodera T; Kanouchi T; Mizusawa H; Yokota T Mol Ther; 2008 Apr; 16(4):734-740. PubMed ID: 28178465 [TBL] [Abstract][Full Text] [Related]
11. Filling the gap in LNA antisense oligo gapmers: the effects of unlocked nucleic acid (UNA) and 4'-C-hydroxymethyl-DNA modifications on RNase H recruitment and efficacy of an LNA gapmer. Fluiter K; Mook OR; Vreijling J; Langkjaer N; Højland T; Wengel J; Baas F Mol Biosyst; 2009 Aug; 5(8):838-43. PubMed ID: 19603119 [TBL] [Abstract][Full Text] [Related]
12. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. Gupta N; Fisker N; Asselin MC; Lindholm M; Rosenbohm C; Ørum H; Elmén J; Seidah NG; Straarup EM PLoS One; 2010 May; 5(5):e10682. PubMed ID: 20498851 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the effects of chemically different linkers on hepatic accumulations, cell tropism and gene silencing ability of cholesterol-conjugated antisense oligonucleotides. Wada S; Yasuhara H; Wada F; Sawamura M; Waki R; Yamamoto T; Harada-Shiba M; Obika S J Control Release; 2016 Mar; 226():57-65. PubMed ID: 26855051 [TBL] [Abstract][Full Text] [Related]
14. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides. Kasuya T; Hori S; Watanabe A; Nakajima M; Gahara Y; Rokushima M; Yanagimoto T; Kugimiya A Sci Rep; 2016 Jul; 6():30377. PubMed ID: 27461380 [TBL] [Abstract][Full Text] [Related]
15. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2'-O-methyl RNA, phosphorothioates and small interfering RNA. Grünweller A; Wyszko E; Bieber B; Jahnel R; Erdmann VA; Kurreck J Nucleic Acids Res; 2003 Jun; 31(12):3185-93. PubMed ID: 12799446 [TBL] [Abstract][Full Text] [Related]
16. Locked Nucleic Acid Gapmers and Conjugates Potently Silence ADAM33, an Asthma-Associated Metalloprotease with Nuclear-Localized mRNA. Pendergraff HM; Krishnamurthy PM; Debacker AJ; Moazami MP; Sharma VK; Niitsoo L; Yu Y; Tan YN; Haitchi HM; Watts JK Mol Ther Nucleic Acids; 2017 Sep; 8():158-168. PubMed ID: 28918018 [TBL] [Abstract][Full Text] [Related]
17. Development of gapmer antisense oligonucleotide with deoxyribonucleic guanidine (DNG) modifications. Kojima N; Shrestha AR; Akisawa T; Piao H; Kizawa H; Ohmiya Y; Kurita R Nucleosides Nucleotides Nucleic Acids; 2020; 39(1-3):258-269. PubMed ID: 31556356 [TBL] [Abstract][Full Text] [Related]
18. Strategies to improve the design of gapmer antisense oligonucleotide on allele-specific silencing. Aguti S; Cheng S; Ala P; Briggs S; Muntoni F; Zhou H Mol Ther Nucleic Acids; 2024 Sep; 35(3):102237. PubMed ID: 38993932 [TBL] [Abstract][Full Text] [Related]
19. Short DNA/RNA heteroduplex oligonucleotide interacting proteins are key regulators of target gene silencing. Asada K; Sakaue F; Nagata T; Zhang JC; Yoshida-Tanaka K; Abe A; Nawa M; Nishina K; Yokota T Nucleic Acids Res; 2021 May; 49(9):4864-4876. PubMed ID: 33928345 [TBL] [Abstract][Full Text] [Related]
20. Phospholamban Inhibition by a Single Dose of Locked Nucleic Acid Antisense Oligonucleotide Improves Cardiac Contractility in Pressure Overload-Induced Systolic Dysfunction in Mice. Morihara H; Yamamoto T; Oiwa H; Tonegawa K; Tsuchiyama D; Kawakatsu I; Obana M; Maeda M; Mohri T; Obika S; Fujio Y; Nakayama H J Cardiovasc Pharmacol Ther; 2017 May; 22(3):273-282. PubMed ID: 27811197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]