These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 25584900)

  • 1. Chimeric Antisense Oligonucleotide Conjugated to α-Tocopherol.
    Nishina T; Numata J; Nishina K; Yoshida-Tanaka K; Nitta K; Piao W; Iwata R; Ito S; Kuwahara H; Wada T; Mizusawa H; Yokota T
    Mol Ther Nucleic Acids; 2015 Jan; 4(1):e220. PubMed ID: 25584900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the effect of 2'-O-methyl, fluoro hexitol, bicyclo and Morpholino nucleic acid modifications on potency of GalNAc conjugated antisense oligonucleotides in mice.
    Prakash TP; Yu J; Kinberger GA; Low A; Jackson M; Rigo F; Swayze EE; Seth PP
    Bioorg Med Chem Lett; 2018 Dec; 28(23-24):3774-3779. PubMed ID: 30342955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-RNA Heteroduplex Oligonucleotide for Highly Efficient Gene Silencing.
    Hara RI; Yoshioka K; Yokota T
    Methods Mol Biol; 2020; 2176():113-119. PubMed ID: 32865786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol.
    Nishina K; Unno T; Uno Y; Kubodera T; Kanouchi T; Mizusawa H; Yokota T
    Mol Ther; 2008 Apr; 16(4):734-40. PubMed ID: 18362929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient In Vivo Delivery of siRNA to the Liver by Conjugation of α-Tocopherol.
    Nishina K; Unno T; Uno Y; Kubodera T; Kanouchi T; Mizusawa H; Yokota T
    Mol Ther; 2008 Apr; 16(4):734-740. PubMed ID: 28178465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Gene Suppression by DNA/DNA Double-Stranded Oligonucleotide In Vivo.
    Asami Y; Nagata T; Yoshioka K; Kunieda T; Yoshida-Tanaka K; Bennett CF; Seth PP; Yokota T
    Mol Ther; 2021 Feb; 29(2):838-847. PubMed ID: 33290725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Characterization of Hepatic Distribution and mRNA Reduction of Antisense Oligonucleotides Conjugated with Triantennary N-Acetyl Galactosamine and Lipophilic Ligands Targeting Apolipoprotein B.
    Watanabe A; Nakajima M; Kasuya T; Onishi R; Kitade N; Mayumi K; Ikehara T; Kugimiya A
    J Pharmacol Exp Ther; 2016 May; 357(2):320-30. PubMed ID: 26907624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered Biodistribution and Hepatic Safety Profile of a Gapmer Antisense Oligonucleotide Bearing Guanidine-Bridged Nucleic Acids.
    Sasaki T; Hirakawa Y; Yamairi F; Kurita T; Murahashi K; Nishimura H; Iwazaki N; Yasuhara H; Tateoka T; Ohta T; Obika S; Kotera J
    Nucleic Acid Ther; 2022 Jun; 32(3):177-184. PubMed ID: 35073217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA/RNA heteroduplex oligonucleotide for highly efficient gene silencing.
    Nishina K; Piao W; Yoshida-Tanaka K; Sujino Y; Nishina T; Yamamoto T; Nitta K; Yoshioka K; Kuwahara H; Yasuhara H; Baba T; Ono F; Miyata K; Miyake K; Seth PP; Low A; Yoshida M; Bennett CF; Kataoka K; Mizusawa H; Obika S; Yokota T
    Nat Commun; 2015 Aug; 6():7969. PubMed ID: 26258894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure Activity Relationships of α-L-LNA Modified Phosphorothioate Gapmer Antisense Oligonucleotides in Animals.
    Seth PP; Jazayeri A; Yu J; Allerson CR; Bhat B; Swayze EE
    Mol Ther Nucleic Acids; 2012 Sep; 1(10):e47. PubMed ID: 23344239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filling the gap in LNA antisense oligo gapmers: the effects of unlocked nucleic acid (UNA) and 4'-C-hydroxymethyl-DNA modifications on RNase H recruitment and efficacy of an LNA gapmer.
    Fluiter K; Mook OR; Vreijling J; Langkjaer N; Højland T; Wengel J; Baas F
    Mol Biosyst; 2009 Aug; 5(8):838-43. PubMed ID: 19603119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo.
    Gupta N; Fisker N; Asselin MC; Lindholm M; Rosenbohm C; Ørum H; Elmén J; Seidah NG; Straarup EM
    PLoS One; 2010 May; 5(5):e10682. PubMed ID: 20498851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the effects of chemically different linkers on hepatic accumulations, cell tropism and gene silencing ability of cholesterol-conjugated antisense oligonucleotides.
    Wada S; Yasuhara H; Wada F; Sawamura M; Waki R; Yamamoto T; Harada-Shiba M; Obika S
    J Control Release; 2016 Mar; 226():57-65. PubMed ID: 26855051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides.
    Kasuya T; Hori S; Watanabe A; Nakajima M; Gahara Y; Rokushima M; Yanagimoto T; Kugimiya A
    Sci Rep; 2016 Jul; 6():30377. PubMed ID: 27461380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2'-O-methyl RNA, phosphorothioates and small interfering RNA.
    Grünweller A; Wyszko E; Bieber B; Jahnel R; Erdmann VA; Kurreck J
    Nucleic Acids Res; 2003 Jun; 31(12):3185-93. PubMed ID: 12799446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locked Nucleic Acid Gapmers and Conjugates Potently Silence ADAM33, an Asthma-Associated Metalloprotease with Nuclear-Localized mRNA.
    Pendergraff HM; Krishnamurthy PM; Debacker AJ; Moazami MP; Sharma VK; Niitsoo L; Yu Y; Tan YN; Haitchi HM; Watts JK
    Mol Ther Nucleic Acids; 2017 Sep; 8():158-168. PubMed ID: 28918018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of gapmer antisense oligonucleotide with deoxyribonucleic guanidine (DNG) modifications.
    Kojima N; Shrestha AR; Akisawa T; Piao H; Kizawa H; Ohmiya Y; Kurita R
    Nucleosides Nucleotides Nucleic Acids; 2020; 39(1-3):258-269. PubMed ID: 31556356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies to improve the design of gapmer antisense oligonucleotide on allele-specific silencing.
    Aguti S; Cheng S; Ala P; Briggs S; Muntoni F; Zhou H
    Mol Ther Nucleic Acids; 2024 Sep; 35(3):102237. PubMed ID: 38993932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short DNA/RNA heteroduplex oligonucleotide interacting proteins are key regulators of target gene silencing.
    Asada K; Sakaue F; Nagata T; Zhang JC; Yoshida-Tanaka K; Abe A; Nawa M; Nishina K; Yokota T
    Nucleic Acids Res; 2021 May; 49(9):4864-4876. PubMed ID: 33928345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospholamban Inhibition by a Single Dose of Locked Nucleic Acid Antisense Oligonucleotide Improves Cardiac Contractility in Pressure Overload-Induced Systolic Dysfunction in Mice.
    Morihara H; Yamamoto T; Oiwa H; Tonegawa K; Tsuchiyama D; Kawakatsu I; Obana M; Maeda M; Mohri T; Obika S; Fujio Y; Nakayama H
    J Cardiovasc Pharmacol Ther; 2017 May; 22(3):273-282. PubMed ID: 27811197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.