These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 25585040)
1. Delayed fluorescence in a solution-processable pure red molecular organic emitter based on dithienylbenzothiadiazole: a joint optical, electroluminescence, and magnetoelectroluminescence study. Chen P; Wang LP; Tan WY; Peng QM; Zhang ST; Zhu XH; Li F ACS Appl Mater Interfaces; 2015 Feb; 7(4):2972-8. PubMed ID: 25585040 [TBL] [Abstract][Full Text] [Related]
2. "Rate-limited effect" of reverse intersystem crossing process: the key for tuning thermally activated delayed fluorescence lifetime and efficiency roll-off of organic light emitting diodes. Cai X; Li X; Xie G; He Z; Gao K; Liu K; Chen D; Cao Y; Su SJ Chem Sci; 2016 Jul; 7(7):4264-4275. PubMed ID: 30155073 [TBL] [Abstract][Full Text] [Related]
3. Highly Efficient Blue Fluorescent OLEDs Based on Upper Level Triplet-Singlet Intersystem Crossing. Xu Y; Liang X; Zhou X; Yuan P; Zhou J; Wang C; Li B; Hu D; Qiao X; Jiang X; Liu L; Su SJ; Ma D; Ma Y Adv Mater; 2019 Mar; 31(12):e1807388. PubMed ID: 30714207 [TBL] [Abstract][Full Text] [Related]
5. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs. Furukawa T; Nakanotani H; Inoue M; Adachi C Sci Rep; 2015 Feb; 5():8429. PubMed ID: 25673259 [TBL] [Abstract][Full Text] [Related]
6. Kinetics of thermal-assisted delayed fluorescence in blue organic emitters with large singlet-triplet energy gap. Dias FB Philos Trans A Math Phys Eng Sci; 2015 Jun; 373(2044):. PubMed ID: 25987577 [TBL] [Abstract][Full Text] [Related]
7. Solution-processed white OLEDs with power efficiency over 90 lm W Chen L; Chang Y; Shi S; Wang S; Wang L Mater Horiz; 2022 Apr; 9(4):1299-1308. PubMed ID: 35195631 [TBL] [Abstract][Full Text] [Related]
8. Efficient triplet application in exciplex delayed-fluorescence OLEDs using a reverse intersystem crossing mechanism based on a ΔES-T of around zero. Zhang T; Chu B; Li W; Su Z; Peng QM; Zhao B; Luo Y; Jin F; Yan X; Gao Y; Wu H; Zhang F; Fan D; Wang J ACS Appl Mater Interfaces; 2014 Aug; 6(15):11907-14. PubMed ID: 24840782 [TBL] [Abstract][Full Text] [Related]
9. High-Efficiency Solution-Processable OLEDs by Employing Thermally Activated Delayed Fluorescence Emitters with Multiple Conversion Channels of Triplet Excitons. Liu Y; Hua L; Zhao Z; Ying S; Ren Z; Yan S Adv Sci (Weinh); 2021 Sep; 8(18):e2101326. PubMed ID: 34313017 [TBL] [Abstract][Full Text] [Related]
10. Thermally activated delayed fluorescence sensitized phosphorescence: a strategy to break the trade-off between efficiency and efficiency roll-off. Li C; Duan L; Zhang D; Qiu Y ACS Appl Mater Interfaces; 2015 Jul; 7(28):15154-9. PubMed ID: 26158429 [TBL] [Abstract][Full Text] [Related]
11. Efficient thermally activated delayed fluorescence organic light-emitting device based on an exciplex. Jiang X; Chen H; Wu Z; Jin Y; Zhang X; Li X; Yang H; Wu Z Opt Lett; 2022 Nov; 47(22):5873-5876. PubMed ID: 37219124 [TBL] [Abstract][Full Text] [Related]
12. High-Performance Solution-Processed Red Thermally Activated Delayed Fluorescence OLEDs Employing Aggregation-Induced Emission-Active Triazatruxene-Based Emitters. Liu Y; Chen Y; Li H; Wang S; Wu X; Tong H; Wang L ACS Appl Mater Interfaces; 2020 Jul; 12(27):30652-30658. PubMed ID: 32538076 [TBL] [Abstract][Full Text] [Related]
13. Harvesting Triplet Excitons with Exciplex Thermally Activated Delayed Fluorescence Emitters toward High Performance Heterostructured Organic Light-Emitting Field Effect Transistors. Song L; Hu Y; Liu Z; Lv Y; Guo X; Liu X ACS Appl Mater Interfaces; 2017 Jan; 9(3):2711-2719. PubMed ID: 28029040 [TBL] [Abstract][Full Text] [Related]
14. Enhanced electroluminescence based on thermally activated delayed fluorescence from a carbazole-triazine derivative. Serevičius T; Nakagawa T; Kuo MC; Cheng SH; Wong KT; Chang CH; Kwong RC; Xia S; Adachi C Phys Chem Chem Phys; 2013 Oct; 15(38):15850-5. PubMed ID: 23907636 [TBL] [Abstract][Full Text] [Related]
16. Highly Efficient Deep-Blue Electroluminescence Based on a Solution-Processable A-π-D-π-A Oligo( Usta H; Alimli D; Ozdemir R; Dabak S; Zorlu Y; Alkan F; Tekin E; Can A ACS Appl Mater Interfaces; 2019 Nov; 11(47):44474-44486. PubMed ID: 31609580 [TBL] [Abstract][Full Text] [Related]
17. Ultrafast Triplet-Singlet Exciton Interconversion in Narrowband Blue Organoboron Emitters Doped with Heavy Chalcogens. Park IS; Min H; Yasuda T Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202205684. PubMed ID: 35618697 [TBL] [Abstract][Full Text] [Related]
18. Triplet-triplet annihilation in highly efficient fluorescent organic light-emitting diodes: current state and future outlook. Kondakov DY Philos Trans A Math Phys Eng Sci; 2015 Jun; 373(2044):. PubMed ID: 25987574 [TBL] [Abstract][Full Text] [Related]
19. Managing Locally Excited and Charge-Transfer Triplet States to Facilitate Up-Conversion in Red TADF Emitters That Are Available for Both Vacuum- and Solution-Processes. Chen JX; Xiao YF; Wang K; Sun D; Fan XC; Zhang X; Zhang M; Shi YZ; Yu J; Geng FX; Lee CS; Zhang XH Angew Chem Int Ed Engl; 2021 Feb; 60(5):2478-2484. PubMed ID: 33080106 [TBL] [Abstract][Full Text] [Related]
20. Role of Bimolecular Exciton Kinetics in Controlling the Efficiency of Organic Light-Emitting Diodes. Dey A; Kabra D ACS Appl Mater Interfaces; 2018 Nov; 10(44):38287-38293. PubMed ID: 30298717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]