These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25585253)

  • 1. Harvesting carbohydrate-rich Arthrospira platensis by spontaneous settling.
    Depraetere O; Pierre G; Deschoenmaeker F; Badri H; Foubert I; Leys N; Markou G; Wattiez R; Michaud P; Muylaert K
    Bioresour Technol; 2015 Mar; 180():16-21. PubMed ID: 25585253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the integrated hydrothermal carbonization-algal cultivation process for enhanced nitrogen utilization in Arthrospira platensis production.
    Yao C; Wu P; Pan Y; Lu H; Chi L; Meng Y; Cao X; Xue S; Yang X
    Bioresour Technol; 2016 Sep; 216():381-90. PubMed ID: 27262092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutritional optimization of Arthrospira platensis for starch and Total carbohydrates production.
    Lai YH; Puspanadan S; Lee CK
    Biotechnol Prog; 2019 May; 35(3):e2798. PubMed ID: 30828976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply.
    Aikawa S; Izumi Y; Matsuda F; Hasunuma T; Chang JS; Kondo A
    Bioresour Technol; 2012 Mar; 108():211-5. PubMed ID: 22277210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alteration of the biomass composition of Arthrospira (Spirulina) platensis under various amounts of limited phosphorus.
    Markou G
    Bioresour Technol; 2012 Jul; 116():533-5. PubMed ID: 22595095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis.
    Markou G; Chatzipavlidis I; Georgakakis D
    World J Microbiol Biotechnol; 2012 Aug; 28(8):2661-70. PubMed ID: 22806192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of recovered nitrogen from hydrothermal carbonization process by Arthrospira platensis.
    Yao C; Pan Y; Lu H; Wu P; Meng Y; Cao X; Xue S
    Bioresour Technol; 2016 Jul; 212():26-34. PubMed ID: 27070286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis.
    Hena S; Znad H; Heong KT; Judd S
    Water Res; 2018 Jan; 128():267-277. PubMed ID: 29107911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous use of urea and potassium nitrate for Arthrospira (Spirulina) platensis cultivation.
    Vieira DC; Matsudo MC; Sato S; Converti A; de Carvalho JC
    Biotechnol J; 2012 May; 7(5):649-55. PubMed ID: 21905227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fed-batch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation.
    Xie Y; Jin Y; Zeng X; Chen J; Lu Y; Jing K
    Bioresour Technol; 2015 Mar; 180():281-7. PubMed ID: 25618497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trade-Off between Growth and Carbohydrate Accumulation in Nutrient-Limited Arthrospira sp. PCC 8005 Studied by Integrating Transcriptomic and Proteomic Approaches.
    Depraetere O; Deschoenmaeker F; Badri H; Monsieurs P; Foubert I; Leys N; Wattiez R; Muylaert K
    PLoS One; 2015; 10(7):e0132461. PubMed ID: 26196510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spirulina platensis is more efficient than Chlorella homosphaera in carbohydrate productivity.
    Margarites AC; Volpato N; Araújo E; Cardoso LG; Bertolin TE; Colla LM; Costa JAV
    Environ Technol; 2017 Sep; 38(17):2209-2216. PubMed ID: 27790947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mössbauer spectroscopic study of transformations of iron species by the cyanobacterium Arthrospira platensis (formerly Spirulina platensis).
    Perfiliev YD; Tambiev AK; Konnychev MA; Skalny AV; Lobakova ES; Kirpichnikov MP
    J Trace Elem Med Biol; 2018 Jul; 48():105-110. PubMed ID: 29773168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and transcriptional responses to high temperature in Arthrospira (Spirulina) platensis C1.
    Panyakampol J; Cheevadhanarak S; Sutheeworapong S; Chaijaruwanich J; Senachak J; Siangdung W; Jeamton W; Tanticharoen M; Paithoonrangsarid K
    Plant Cell Physiol; 2015 Mar; 56(3):481-96. PubMed ID: 25524069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Physicochemical Treatment Allows Reutilization of Arthrospira platensis Exhausted Medium : An Investigation of Reusing Medium in Arthrospira platensis Cultivation.
    Mejia-da-Silva LDC; Matsudo MC; Morocho-Jacome AL; de Carvalho JCM
    Appl Biochem Biotechnol; 2018 Sep; 186(1):40-53. PubMed ID: 29504073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selenium uptake and assessment of the biochemical changes in Arthrospira (Spirulina) platensis biomass during the synthesis of selenium nanoparticles.
    Zinicovscaia I; Chiriac T; Cepoi L; Rudi L; Culicov O; Frontasyeva M; Rudic V
    Can J Microbiol; 2017 Jan; 63(1):27-34. PubMed ID: 27841947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater.
    Leema JT; Kirubagaran R; Vinithkumar NV; Dheenan PS; Karthikayulu S
    Bioresour Technol; 2010 Dec; 101(23):9221-7. PubMed ID: 20655201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave support of the alcoholic fermentation process of cyanobacteria Arthrospira platensis.
    Nowicka A; Zieliński M; Dębowski M
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):118-124. PubMed ID: 31124072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co2+, Cu2+, and Zn2+ accumulation by cyanobacterium Spirulina platensis.
    Vannela R; Verma SK
    Biotechnol Prog; 2006; 22(5):1282-93. PubMed ID: 17022665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate.
    Vieira Salla AC; Margarites AC; Seibel FI; Holz LC; Brião VB; Bertolin TE; Colla LM; Costa JA
    Bioresour Technol; 2016 Jun; 209():133-41. PubMed ID: 26967336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.