These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 25585657)

  • 1. Electro-resistive bands for non-invasive cardiac and respiration monitoring, a feasibility study.
    Gargiulo GD; O'Loughlin A; Breen PP
    Physiol Meas; 2015 Feb; 36(2):N35-49. PubMed ID: 25585657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of stroke volume variations obtained with the pressure recording analytic method.
    Biais M; Cottenceau V; Stecken L; Jean M; Ottolenghi L; Roullet S; Quinart A; Sztark F
    Crit Care Med; 2012 Apr; 40(4):1186-91. PubMed ID: 22425817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Day-to-Day Variability in Measurements of Respiration Using Bioimpedance from a Non-Standard Location.
    Goyal K; Shah D; Day SW
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39066010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Employing an Incentive Spirometer to Calibrate Tidal Volumes Estimated from a Smartphone Camera.
    Reyes BA; Reljin N; Kong Y; Nam Y; Ha S; Chon KH
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26999152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Non-invasive tidal volume monitoring by impedance pneumography--correlation between respiratory delta Z and tidal volume].
    Ito A
    Nihon Kyobu Shikkan Gakkai Zasshi; 1975 Feb; 13(2):87-93. PubMed ID: 1172102
    [No Abstract]   [Full Text] [Related]  

  • 6. Noninvasive, simultaneous, and continuous measurements of stroke volume and tidal volume using EIT: feasibility study of animal experiments.
    Jang GY; Jeong YJ; Zhang T; Oh TI; Ko RE; Chung CR; Suh GY; Woo EJ
    Sci Rep; 2020 Jul; 10(1):11242. PubMed ID: 32647206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An optical measurement method for the simultaneous assessment of respiration and heart rates in preterm infants.
    Marchionni P; Scalise L; Ercoli I; Tomasini EP
    Rev Sci Instrum; 2013 Dec; 84(12):121705. PubMed ID: 24387410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous cardiac output monitoring in humans by invasive and noninvasive peripheral blood pressure waveform analysis.
    Lu Z; Mukkamala R
    J Appl Physiol (1985); 2006 Aug; 101(2):598-608. PubMed ID: 16849813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The respiratory inductive plethysmograph: a new non-invasive monitor of respiration.
    Cohn MA; Rao AS; Broudy M; Birch S; Watson H; Atkins N; Davis B; Stott FD; Sackner MA
    Bull Eur Physiopathol Respir; 1982; 18(4):643-58. PubMed ID: 7116012
    [No Abstract]   [Full Text] [Related]  

  • 10. Monitoring cardiac function: echocardiography, pulse contour analysis and beyond.
    Renner J; Scholz J; Bein B
    Best Pract Res Clin Anaesthesiol; 2013 Jun; 27(2):187-200. PubMed ID: 24012231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Should dynamic parameters for prediction of fluid responsiveness be indexed to the tidal volume?
    Vistisen ST; Koefoed-Nielsen J; Larsson A
    Acta Anaesthesiol Scand; 2010 Feb; 54(2):191-8. PubMed ID: 19764908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Various methods for monitoring cardiac output in intensive care patients].
    Palsgaard Møller T; Perner A; Bülow HH
    Ugeskr Laeger; 2012 Sep; 174(36):2067-71. PubMed ID: 22944325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Circulation monitoring of critically ill patients with the Pulse Contour Cardiac Output system].
    Afshari A; Perner A; Bonde J
    Ugeskr Laeger; 2006 May; 168(18):1746-9. PubMed ID: 16729924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated pre-ejection period variation predicts fluid responsiveness in low tidal volume ventilated pigs.
    Vistisen ST; Koefoed-Nielsen J; Larsson A
    Acta Anaesthesiol Scand; 2010 Feb; 54(2):199-205. PubMed ID: 19681786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Special article: evaluation of a novel noninvasive respiration monitor providing continuous measurement of minute ventilation in ambulatory subjects in a variety of clinical scenarios.
    Voscopoulos C; Brayanov J; Ladd D; Lalli M; Panasyuk A; Freeman J
    Anesth Analg; 2013 Jul; 117(1):91-100. PubMed ID: 23733842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive monitoring of chest wall movement in infants using laser.
    Kondo T; Minocchieri S; Baldwin DN; Nelle M; Frey U
    Pediatr Pulmonol; 2006 Oct; 41(10):985-92. PubMed ID: 16868962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in end-tidal carbon dioxide and volumetric carbon dioxide as predictors of volume responsiveness in hemodynamically unstable patients.
    Young A; Marik PE; Sibole S; Grooms D; Levitov A
    J Cardiothorac Vasc Anesth; 2013 Aug; 27(4):681-4. PubMed ID: 23182383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive cardiac output monitoring in neonates using bioreactance: a comparison with echocardiography.
    Weisz DE; Jain A; McNamara PJ; EL-Khuffash A
    Neonatology; 2012; 102(1):61-7. PubMed ID: 22508150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Less invasive indicators of changes in thermodilution cardiac output by ventilatory changes after cardiac surgery.
    Breukers RM; Willems JH; de Wilde R; Jansen JR; Groeneveld AJ
    Eur J Anaesthesiol; 2009 Oct; 26(10):863-7. PubMed ID: 19390444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous monitoring of cardiac output from TCG signals.
    Keenan DB
    Biomed Sci Instrum; 2004; 40():343-9. PubMed ID: 15133982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.