BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 25585871)

  • 1. Activated carbon electrodes: electrochemical oxidation coupled with desalination for wastewater treatment.
    Duan F; Li Y; Cao H; Wang Y; Crittenden JC; Zhang Y
    Chemosphere; 2015 Apr; 125():205-11. PubMed ID: 25585871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Research on treatment of high salt wastewater by the graphite and activated carbon fiber composite electrodes].
    Zhou GZ; Wang ZF; Wang X; Li WQ; Li SX
    Huan Jing Ke Xue; 2014 May; 35(5):1832-7. PubMed ID: 25055674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination.
    Liang P; Yuan L; Yang X; Zhou S; Huang X
    Water Res; 2013 May; 47(7):2523-30. PubMed ID: 23497976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced electrochemical degradation of 2,4-dichlorophenol with the assist of hydrochar.
    Cao W; Zeng C; Guo X; Liu Q; Zhang X; Mameda N
    Chemosphere; 2020 Dec; 260():127643. PubMed ID: 32683028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane capacitive deionization for low-salinity desalination in the reclamation of domestic wastewater effluents.
    Lee M; Fan CS; Chen YW; Chang KC; Chiueh PT; Hou CH
    Chemosphere; 2019 Nov; 235():413-422. PubMed ID: 31272001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous desalination and molecular resource recovery from wastewater using an electrical separation system integrated with a supporting liquid membrane.
    Xu L; Zhang Y; Li T; Peng S; Wu D
    Water Res; 2023 Nov; 246():120706. PubMed ID: 37820511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous decolorization and desalination of dye wastewater through electrochemical process.
    Shi J; Zhang B; Liang S; Li J; Wang Z
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8455-8464. PubMed ID: 29307069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of the X-ray contrast media diatrizoate by electrochemical reduction and oxidation.
    Radjenovic J; Flexer V; Donose BC; Sedlak DL; Keller J
    Environ Sci Technol; 2013; 47(23):13686-94. PubMed ID: 24261992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of the electrochemical degradation process of the antibiotic ciprofloxacin using a double-sided β-PbO
    Wachter N; Aquino JM; Denadai M; Barreiro JC; Silva AJ; Cass QB; Rocha-Filho RC; Bocchi N
    Environ Sci Pollut Res Int; 2019 Feb; 26(5):4438-4449. PubMed ID: 29876851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical Oxidation of EDTA in Nuclear Wastewater Using Platinum Supported on Activated Carbon Fibers.
    Zhao B; Zhu W; Mu T; Hu Z; Duan T
    Int J Environ Res Public Health; 2017 Jul; 14(7):. PubMed ID: 28754016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocatalytic oxidation of phenol from wastewater using Ti/SnO2-Sb2O4 electrode: chemical reaction pathway study.
    Loloi M; Rezaee A; Aliofkhazraei M; Rouhaghdam AS
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19735-43. PubMed ID: 27406226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants.
    Chen L; Lei C; Li Z; Yang B; Zhang X; Lei L
    Chemosphere; 2018 Nov; 210():516-523. PubMed ID: 30025370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of nitric acid-modified activated carbon electrode for removal of Co
    Xue Y; Cheng W; Cao M; Gao J; Chen J; Gui Y; Zhu W; Ma F
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):77536-77552. PubMed ID: 35680747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical/Fe
    Sun Z; Li S; Ding H; Zhu Y; Wang X; Liu H; Zhang Q; Zhao C
    Chemosphere; 2020 Feb; 241():125125. PubMed ID: 31683418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of tyrosol from water by adsorption on carbonaceous materials and electrochemical advanced oxidation processes.
    Flores N; Sharif F; Yasri N; Brillas E; Sirés I; Roberts EPL
    Chemosphere; 2018 Jun; 201():807-815. PubMed ID: 29550575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards understanding of heterogeneous Fenton reaction using carbon-Fe catalysts coupled to in-situ H
    Zárate-Guzmán AI; González-Gutiérrez LV; Godínez LA; Medel-Reyes A; Carrasco-Marín F; Romero-Cano LA
    Chemosphere; 2019 Jun; 224():698-706. PubMed ID: 30851521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cooperative electrochemical oxidation of chlorophenols in anode-cathode compartments.
    Wang H; Wang JL
    J Hazard Mater; 2008 Jun; 154(1-3):44-50. PubMed ID: 17996367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the efficiency of a pilot-scale GDE/BDD electrochemical system in removing phenol from high salinity waters.
    Tawabini BS; Plakas KV; Fraim M; Safi E; Oyehan T; Karabelas AJ
    Chemosphere; 2020 Jan; 239():124714. PubMed ID: 31499309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization.
    Huang SY; Fan CS; Hou CH
    J Hazard Mater; 2014 Aug; 278():8-15. PubMed ID: 24937658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.