These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25586026)

  • 1. Roos and NACP-02 ion chamber perturbations and water-air stopping-power ratios for clinical electron beams for energies from 4 to 22 MeV.
    Bailey M; Shipley DR; Manning JW
    Phys Med Biol; 2015 Feb; 60(3):1087-105. PubMed ID: 25586026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo calculations for reference dosimetry of electron beams with the PTW Roos and NE2571 ion chambers.
    Muir BR; Rogers DW
    Med Phys; 2013 Dec; 40(12):121722. PubMed ID: 24320508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possibility of using cylindrical ionization chambers for percent depth-dose measurements in clinical electron beams.
    Ono T; Araki F; Yoshiyama F
    Med Phys; 2011 Aug; 38(8):4647-54. PubMed ID: 21928637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo calculations of correction factors for plastic phantoms in clinical photon and electron beam dosimetry.
    Araki F; Hanyu Y; Fukuoka M; Matsumoto K; Okumura M; Oguchi H
    Med Phys; 2009 Jul; 36(7):2992-3001. PubMed ID: 19673198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of relative ion chamber calibration coefficients from depth-ionization measurements in clinical electron beams.
    Muir BR; McEwen MR; Rogers DW
    Phys Med Biol; 2014 Oct; 59(19):5953-69. PubMed ID: 25211012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo study of correction factors for the use of plastic phantoms in clinical electron dosimetry.
    Araki F
    Med Phys; 2007 Nov; 34(11):4368-77. PubMed ID: 18072502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evaluation of ionization chambers for the relative dosimetry of kilovoltage x-ray beams.
    Hill R; Mo Z; Haque M; Baldock C
    Med Phys; 2009 Sep; 36(9):3971-81. PubMed ID: 19810470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perturbation correction factors for the NACP-02 plane-parallel ionization chamber in water in high-energy electron beams.
    Verhaegen F; Zakikhani R; Dusautoy A; Palmans H; Bostock G; Shipley D; Seuntjens J
    Phys Med Biol; 2006 Mar; 51(5):1221-35. PubMed ID: 16481689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The calibration of parallel-plate electron ionization chambers at NPL for use with the IPEM 2003 code of practice: summary data.
    Bass G; Thomas R; Pearce J
    Phys Med Biol; 2009 Apr; 54(8):N115-24. PubMed ID: 19305037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the wall perturbation correction for a parallel-plate NACP-02 chamber in clinical electron beams.
    Zink K; Wulff J
    Med Phys; 2011 Feb; 38(2):1045-54. PubMed ID: 21452742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of stopping-power ratios using realistic clinical electron beams.
    Ding GX; Rogers DW; Mackie TR
    Med Phys; 1995 May; 22(5):489-501. PubMed ID: 7643785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An empirical method for the determination of wall perturbation factors for parallel-plate chambers in high-energy electron beams.
    McEwen M; Palmans H; Williams A
    Phys Med Biol; 2006 Oct; 51(20):5167-81. PubMed ID: 17019031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The IPEM code of practice for electron dosimetry for radiotherapy beams of initial energy from 4 to 25 MeV based on an absorbed dose to water calibration.
    Thwaites DI; DuSautoy AR; Jordan T; McEwen MR; Nisbet A; Nahum AE; Pitchford WG;
    Phys Med Biol; 2003 Sep; 48(18):2929-70. PubMed ID: 14529204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron beam quality correction factors for plane-parallel ionization chambers: Monte Carlo calculations using the PENELOPE system.
    Sempau J; Andreo P; Aldana J; Mazurier J; Salvat F
    Phys Med Biol; 2004 Sep; 49(18):4427-44. PubMed ID: 15509075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of elliptical sources in BEAMnrc Monte Carlo system: implementation and application.
    Kim S
    Med Phys; 2009 Apr; 36(4):1046-52. PubMed ID: 19472609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a commercial TPS based on the VMC(++) Monte Carlo code for electron beams: commissioning and dosimetric comparison with EGSnrc in homogeneous and heterogeneous phantoms.
    Ferretti A; Martignano A; Simonato F; Paiusco M
    Phys Med; 2014 Feb; 30(1):25-35. PubMed ID: 22824540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Output factors of ionization chambers and solid state detectors for mobile intraoperative radiotherapy (IORT) accelerator electron beams.
    Güngör G; Aydın G; Mustafayev TZ; Özyar E
    J Appl Clin Med Phys; 2019 Feb; 20(2):13-23. PubMed ID: 30632271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo study of in-field and out-of-field dose distributions from a linear accelerator operating with and without a flattening-filter.
    Almberg SS; Frengen J; Lindmo T
    Med Phys; 2012 Aug; 39(8):5194-203. PubMed ID: 22894444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams.
    Zink K; Czarnecki D; Looe HK; von Voigts-Rhetz P; Harder D
    Med Phys; 2014 Nov; 41(11):111707. PubMed ID: 25370621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The calibration of plane parallel ionisation chambers for the measurement of absorbed dose in electron beams of low to medium energies. Part 1: the NACP chamber.
    Cross P; Freeman N
    Australas Phys Eng Sci Med; 1996 Sep; 19(3):197-200. PubMed ID: 8936730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.