These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 25586080)
1. Analysis and elucidation of phosphoenolpyruvate carboxylase in cyanobacteria. Shylajanaciyar M; Dineshbabu G; Rajalakshmi R; Subramanian G; Prabaharan D; Uma L Protein J; 2015 Feb; 34(1):73-81. PubMed ID: 25586080 [TBL] [Abstract][Full Text] [Related]
2. Allosteric Inhibition of Phosphoenolpyruvate Carboxylases is Determined by a Single Amino Acid Residue in Cyanobacteria. Takeya M; Hirai MY; Osanai T Sci Rep; 2017 Jan; 7():41080. PubMed ID: 28117365 [TBL] [Abstract][Full Text] [Related]
4. Molecular evolution of C4 phosphoenolpyruvate carboxylase in the genus Flaveria--a gradual increase from C3 to C4 characteristics. Engelmann S; Bläsing OE; Gowik U; Svensson P; Westhoff P Planta; 2003 Sep; 217(5):717-25. PubMed ID: 12811556 [TBL] [Abstract][Full Text] [Related]
5. A conserved 19-amino acid synthetic peptide from the carboxy terminus of phosphoenolpyruvate carboxylase inhibits the in vitro phosphorylation of the enzyme by the calcium-independent phosphoenolpyruvate carboxylase kinase. Alvarez R; García-Mauriño S; Feria AB; Vidal J; Echevarría C Plant Physiol; 2003 Jun; 132(2):1097-106. PubMed ID: 12805637 [TBL] [Abstract][Full Text] [Related]
6. Multiple highly expressed phosphoenolpyruvate carboxylase genes have divergent enzyme kinetic properties in two C4 grasses. DiMario RJ; Kophs AN; Apalla AJA; Schnable JN; Cousins AB Ann Bot; 2023 Nov; 132(3):413-428. PubMed ID: 37675505 [TBL] [Abstract][Full Text] [Related]
7. Identification of the allosteric site for neutral amino acids in the maize C González-Segura L; Mújica-Jiménez C; Juárez-Díaz JA; Güémez-Toro R; Martinez-Castilla LP; Muñoz-Clares RA J Biol Chem; 2018 Jun; 293(26):9945-9957. PubMed ID: 29743237 [TBL] [Abstract][Full Text] [Related]
8. Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from Arabidopsis and rice. Sánchez R; Cejudo FJ Plant Physiol; 2003 Jun; 132(2):949-57. PubMed ID: 12805623 [TBL] [Abstract][Full Text] [Related]
9. Salt induction and the partial purification/characterization of phosphoenolpyruvate carboxylase protein-serine kinase from an inducible crassulacean-acid-metabolism (CAM) plant, Mesembryanthemum crystallinum L. Li B; Chollet R Arch Biochem Biophys; 1994 Oct; 314(1):247-54. PubMed ID: 7944403 [TBL] [Abstract][Full Text] [Related]
10. Kranz and single-cell forms of C4 plants in the subfamily Suaedoideae show kinetic C4 convergence for PEPC and Rubisco with divergent amino acid substitutions. Rosnow JJ; Evans MA; Kapralov MV; Cousins AB; Edwards GE; Roalson EH J Exp Bot; 2015 Dec; 66(22):7347-58. PubMed ID: 26417023 [TBL] [Abstract][Full Text] [Related]
11. Purification and characterization of high- and low-molecular-mass isoforms of phosphoenolpyruvate carboxylase from Chlamydomonas reinhardtii. Kinetic, structural and immunological evidence that the green algal enzyme is distinct from the prokaryotic and higher plant enzymes. Rivoal J; Plaxton WC; Turpin DH Biochem J; 1998 Apr; 331 ( Pt 1)(Pt 1):201-9. PubMed ID: 9512480 [TBL] [Abstract][Full Text] [Related]
12. The importance of the strictly conserved, C-terminal glycine residue in phosphoenolpyruvate carboxylase for overall catalysis: mutagenesis and truncation of GLY-961 in the sorghum C4 leaf isoform. Xu W; Ahmed S; Moriyama H; Chollet R J Biol Chem; 2006 Jun; 281(25):17238-17245. PubMed ID: 16624802 [TBL] [Abstract][Full Text] [Related]
13. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. O'Leary B; Park J; Plaxton WC Biochem J; 2011 May; 436(1):15-34. PubMed ID: 21524275 [TBL] [Abstract][Full Text] [Related]
14. Maize C4-form phosphoenolpyruvate carboxylase engineered to be functional in C3 plants: mutations for diminished sensitivity to feedback inhibitors and for increased substrate affinity. Endo T; Mihara Y; Furumoto T; Matsumura H; Kai Y; Izui K J Exp Bot; 2008; 59(7):1811-8. PubMed ID: 18408221 [TBL] [Abstract][Full Text] [Related]
15. Molecular biology of C4 phosphoenolpyruvate carboxylase: Structure, regulation and genetic engineering. Rajagopalan AV; Devi MT; Raghavendra AS Photosynth Res; 1994 Feb; 39(2):115-35. PubMed ID: 24311065 [TBL] [Abstract][Full Text] [Related]
16. Convergent molecular evolution of phosphoenolpyruvate carboxylase gene family in C Shu JP; Yan YH; Wang RJ PeerJ; 2022; 10():e12828. PubMed ID: 35116203 [TBL] [Abstract][Full Text] [Related]
17. Characterization and expression analysis of genes encoding phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase of Lotus japonicus, a model legume. Nakagawa T; Izumi T; Banba M; Umehara Y; Kouchi H; Izui K; Hata S Mol Plant Microbe Interact; 2003 Apr; 16(4):281-8. PubMed ID: 12744456 [TBL] [Abstract][Full Text] [Related]
18. A conserved C-terminal peptide of sorghum phosphoenolpyruvate carboxylase promotes its proteolysis, which is prevented by Glc-6P or the phosphorylation state of the enzyme. Gandullo J; Álvarez R; Feria AB; Monreal JA; Díaz I; Vidal J; Echevarría C Planta; 2021 Aug; 254(3):43. PubMed ID: 34355288 [TBL] [Abstract][Full Text] [Related]
19. Cloning of PEPC-1 from a C4 halophyte Suaeda aralocaspica without Kranz anatomy and its recombinant enzymatic activity in responses to abiotic stresses. Cheng G; Wang L; Lan H Enzyme Microb Technol; 2016 Feb; 83():57-67. PubMed ID: 26777251 [TBL] [Abstract][Full Text] [Related]
20. Genome-Wide Identification and Analysis of the Phosphoenolpyruvate Carboxylase Gene Family in Cao J; Cheng G; Wang L; Maimaitijiang T; Lan H Front Plant Sci; 2021; 12():665279. PubMed ID: 34527003 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]