These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 25586210)

  • 41. Effects of cycloxaprid, a novel cis-nitromethylene neonicotinoid insecticide, on the feeding behaviour of Sitobion avenae.
    Cui L; Sun L; Yang D; Yan X; Yuan H
    Pest Manag Sci; 2012 Nov; 68(11):1484-91. PubMed ID: 22707457
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bacterial symbionts, Buchnera, and starvation on wing dimorphism in English grain aphid, Sitobion avenae (F.) (Homoptera: Aphididae).
    Zhang F; Li X; Zhang Y; Coates B; Zhou XJ; Cheng D
    Front Physiol; 2015; 6():155. PubMed ID: 26042046
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Silencing of aphid genes by dsRNA feeding from plants.
    Pitino M; Coleman AD; Maffei ME; Ridout CJ; Hogenhout SA
    PLoS One; 2011; 6(10):e25709. PubMed ID: 21998682
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of plant nutrition on aphid size, prey consumption, and life history characteristics of green lacewing.
    Aqueel MA; Collins CM; Raza AB; Ahmad S; Tariq M; Leather SR
    Insect Sci; 2014 Feb; 21(1):74-82. PubMed ID: 23956127
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Silencing an essential gene involved in infestation and digestion in grain aphid through plant-mediated RNA interference generates aphid-resistant wheat plants.
    Sun Y; Sparks C; Jones H; Riley M; Francis F; Du W; Xia L
    Plant Biotechnol J; 2019 May; 17(5):852-854. PubMed ID: 30582665
    [No Abstract]   [Full Text] [Related]  

  • 46. Relationship between water soluble carbohydrate content, aphid endosymbionts and clonal performance of Sitobion avenae on cocksfoot cultivars.
    Alkhedir H; Karlovsky P; Vidal S
    PLoS One; 2013; 8(1):e54327. PubMed ID: 23342134
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Probing behaviors and their plasticity for the aphid Sitobion avenae on three alternative host plants.
    Huang X; Liu D; Cui X; Shi X
    PLoS One; 2018; 13(9):e0203219. PubMed ID: 30183744
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins.
    Rao SA; Carolan JC; Wilkinson TL
    PLoS One; 2013; 8(2):e57413. PubMed ID: 23460852
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein elicitor PeaT1 enhanced resistance against aphid (Sitobion avenae) in wheat.
    Li L; Wang S; Yang X; Francis F; Qiu D
    Pest Manag Sci; 2020 Jan; 76(1):236-243. PubMed ID: 31149755
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The salivary effector protein Sg2204 in the greenbug Schizaphis graminum suppresses wheat defence and is essential for enabling aphid feeding on host plants.
    Zhang Y; Liu X; Francis F; Xie H; Fan J; Wang Q; Liu H; Sun Y; Chen J
    Plant Biotechnol J; 2022 Nov; 20(11):2187-2201. PubMed ID: 35984895
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcriptional Responses in Defense-Related Genes of Sitobion avenae (Hemiptera: Aphididae) Feeding on Wheat and Barley.
    Huang X; Liu D; Zhang R; Shi X
    J Econ Entomol; 2019 Feb; 112(1):382-395. PubMed ID: 30339225
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparisons of salivary proteins from five aphid (Hemiptera: Aphididae) species.
    Cooper WR; Dillwith JW; Puterka GJ
    Environ Entomol; 2011 Feb; 40(1):151-6. PubMed ID: 22182624
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Niche construction and niche choice by aphids infesting wheat ears.
    Bühler A; Schweiger R
    Oecologia; 2024 Oct; 206(1-2):47-59. PubMed ID: 39227465
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SUPPRESSING A PEROXIDASE GENE REDUCES SURVIVAL IN THE WHEAT APHID Sitobion avenae.
    Deng F; He Q; Zhao Z
    Arch Insect Biochem Physiol; 2016 Oct; 93(2):86-95. PubMed ID: 27406683
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance.
    Van Eck L; Schultz T; Leach JE; Scofield SR; Peairs FB; Botha AM; Lapitan NL
    Plant Biotechnol J; 2010 Dec; 8(9):1023-32. PubMed ID: 20561246
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular characterization of two isoforms of a farnesyl pyrophosphate synthase gene in wheat and their roles in sesquiterpene synthesis and inducible defence against aphid infestation.
    Zhang Y; Li ZX; Yu XD; Fan J; Pickett JA; Jones HD; Zhou JJ; Birkett MA; Caulfield J; Napier JA; Zhao GY; Cheng XG; Shi Y; Bruce TJA; Xia LQ
    New Phytol; 2015 May; 206(3):1101-1115. PubMed ID: 25644034
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultrastructure of compatible and incompatible interactions in phloem sieve elements during the stylet penetration by cotton aphids in melon.
    Garzo E; Fernández-Pascual M; Morcillo C; Fereres A; Gómez-Guillamón ML; Tjallingii WF
    Insect Sci; 2018 Aug; 25(4):631-642. PubMed ID: 28213963
    [TBL] [Abstract][Full Text] [Related]  

  • 58. How aphids decide what is good for them: experiments to test aphid feeding behaviour on Tanacetum vulgare (L.) using different nitrogen regimes.
    Nowak H; Komor E
    Oecologia; 2010 Aug; 163(4):973-84. PubMed ID: 20461410
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chemical inhibition of Kir channels reduces salivary secretions and phloem feeding of the cotton aphid, Aphis gossypii (Glover).
    Li Z; Davis JA; Swale DR
    Pest Manag Sci; 2019 Oct; 75(10):2725-2734. PubMed ID: 30785236
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Changes in activity of lysine decarboxylase in winter triticale in response to grain aphid feeding.
    Sempruch C; Leszczyński B; Wójcicka A; Makosz M; Matok H; Chrzanowski G
    Acta Biol Hung; 2010 Dec; 61(4):512-5. PubMed ID: 21112841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.