These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 2558624)

  • 1. Characterization of phosphoenolpyruvate synthase mutants in Salmonella typhimurium.
    Smyer JR; Jeter RM
    Arch Microbiol; 1989; 153(1):26-32. PubMed ID: 2558624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salmonella locus affecting phosphoenolpyruvate synthase activity identified by a deletion analysis.
    Calvo JM; Goodman M; Salgo M; Capes N
    J Bacteriol; 1971 Apr; 106(1):286-8. PubMed ID: 4928014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered transcriptional patterns affecting several metabolic pathways in strains of Salmonella typhimurium which overexpress the fructose regulon.
    Chin AM; Feldheim DA; Saier MH
    J Bacteriol; 1989 May; 171(5):2424-34. PubMed ID: 2496106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A degradation pathway of propionate in Salmonella typhimurium LT-2.
    Fernández-Briera A; Garrido-Pertierra A
    Biochimie; 1988 Jun; 70(6):757-68. PubMed ID: 2844305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium.
    Feldheim DA; Chin AM; Nierva CT; Feucht BU; Cao YW; Xu YF; Sutrina SL; Saier MH
    J Bacteriol; 1990 Sep; 172(9):5459-69. PubMed ID: 2203752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A transport system for phosphoenolpyruvate, 2-phosphoglycerate, and 3-phosphoglycerate in Salmonella typhimurium.
    Saier MH; Wentzel DL; Feucht BU; Judice JJ
    J Biol Chem; 1975 Jul; 250(13):5089-96. PubMed ID: 238977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription of pfl is regulated by anaerobiosis, catabolite repression, pyruvate, and oxrA: pfl::Mu dA operon fusions of Salmonella typhimurium.
    Wong KK; Suen KL; Kwan HS
    J Bacteriol; 1989 Sep; 171(9):4900-5. PubMed ID: 2549003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of lip expression in Salmonella typhimurium: analysis of lip::lac operon fusions.
    Smith RL; Pelley JW; Jeter RM
    J Gen Microbiol; 1991 Oct; 137(10):2307-12. PubMed ID: 1663151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of Salmonella typhimurium glyoxylate shunt mutants.
    Wilson RB; Maloy SR
    J Bacteriol; 1987 Jul; 169(7):3029-34. PubMed ID: 3298210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic 3', 5'-adenosine monophosphate phosphodiesterase mutants of Salmonella typhimurium.
    Alper MD; Ames BN
    J Bacteriol; 1975 Jun; 122(3):1081-90. PubMed ID: 168178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of two phosphatases and a cyclic phosphodiesterase of Salmonella typhimurium.
    Kier LD; Weppelman R; Ames BN
    J Bacteriol; 1977 Apr; 130(1):420-8. PubMed ID: 192713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The repressor of the PEP:fructose phosphotransferase system is required for the transcription of the pps gene of Escherichia coli.
    Geerse RH; van der Pluijm J; Postma PW
    Mol Gen Genet; 1989 Aug; 218(2):348-52. PubMed ID: 2674659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic evidence for separate site catalysis by pyruvate phosphate dikinase.
    Thrall SH; Dunaway-Mariano D
    Biochemistry; 1994 Feb; 33(5):1103-7. PubMed ID: 8110741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fosfomycin resistance: selection method for internal and extended deletions of the phosphoenolpyruvate:sugar phosphotransferase genes of Salmonella typhimurium.
    Cordaro JC; Melton T; Stratis JP; Atagün M; Gladding C; Hartman PE; Roseman S
    J Bacteriol; 1976 Dec; 128(3):785-93. PubMed ID: 186449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two global regulatory systems (Crp and Arc) control the cobalamin/propanediol regulon of Salmonella typhimurium.
    Ailion M; Bobik TA; Roth JR
    J Bacteriol; 1993 Nov; 175(22):7200-8. PubMed ID: 8226666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Location of the catalytic site for phosphoenolpyruvate formation within the primary structure of Clostridium symbiosum pyruvate phosphate dikinase. 1. Identification of an essential cysteine by chemical modification with [1-14C]bromopyruvate and site-directed mutagenesis.
    Xu Y; Yankie L; Shen L; Jung YS; Mariano PS; Dunaway-Mariano D; Martin BM
    Biochemistry; 1995 Feb; 34(7):2181-7. PubMed ID: 7857929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the covalent enzyme intermediates formed during pyruvate phosphate dikinase catalysis.
    Thrall SH; Mehl AF; Carroll LJ; Dunaway-Mariano D
    Biochemistry; 1993 Feb; 32(7):1803-9. PubMed ID: 8382522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic AMP-dependent synthesis of fimbriae in Salmonella typhimurium: effects of cya and pts mutations.
    Saier MH; Schmidt MR; Leibowitz M
    J Bacteriol; 1978 Apr; 134(1):356-8. PubMed ID: 206537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospho-transfer networks and ATP homeostasis in response to an ineffective electron transport chain in Pseudomonas fluorescens.
    Appanna VP; Alhasawi AA; Auger C; Thomas SC; Appanna VD
    Arch Biochem Biophys; 2016 Sep; 606():26-33. PubMed ID: 27431058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.