These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 25586497)

  • 1. Methods for the creation of cyclic Peptide libraries for use in lead discovery.
    Foster AD; Ingram JD; Leitch EK; Lennard KR; Osher EL; Tavassoli A
    J Biomol Screen; 2015 Jun; 20(5):563-76. PubMed ID: 25586497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetically Encoded Cyclic Peptide Libraries: From Hit to Lead and Beyond.
    Valentine J; Tavassoli A
    Methods Enzymol; 2018; 610():117-134. PubMed ID: 30390796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SICLOPPS cyclic peptide libraries in drug discovery.
    Tavassoli A
    Curr Opin Chem Biol; 2017 Jun; 38():30-35. PubMed ID: 28258013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptides come round: using SICLOPPS libraries for early stage drug discovery.
    Lennard KR; Tavassoli A
    Chemistry; 2014 Aug; 20(34):10608-14. PubMed ID: 25043886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic Selections with SICLOPPS Libraries: Toward the Identification of Novel Protein-Protein Interaction Inhibitors and Chemical Tools.
    Castillo F; Tavassoli A
    Methods Mol Biol; 2019; 2001():317-328. PubMed ID: 31134578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic Peptide Screening Methods for Preclinical Drug Discovery.
    Li X; Craven TW; Levine PM
    J Med Chem; 2022 Sep; 65(18):11913-11926. PubMed ID: 36074956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragment-based approaches to the discovery of kinase inhibitors.
    Mortenson PN; Berdini V; O'Reilly M
    Methods Enzymol; 2014; 548():69-92. PubMed ID: 25399642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular Production of Cyclic Peptide Libraries with SICLOPPS.
    Osher EL; Tavassoli A
    Methods Mol Biol; 2017; 1495():27-39. PubMed ID: 27714608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection-based discovery of macrocyclic peptides for the next generation therapeutics.
    Morioka T; Loik ND; Hipolito CJ; Goto Y; Suga H
    Curr Opin Chem Biol; 2015 Jun; 26():34-41. PubMed ID: 25703142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide Display Technologies.
    Pitt A; Nims Z
    Methods Mol Biol; 2019; 2001():285-298. PubMed ID: 31134576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MOrPH-PhD: A Phage Display System for the Functional Selection of Genetically Encoded Macrocyclic Peptides.
    Gu Y; Iannuzzelli JA; Fasan R
    Methods Mol Biol; 2022; 2371():261-286. PubMed ID: 34596853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput sequence determination of cyclic peptide library members by partial Edman degradation/mass spectrometry.
    Joo SH; Xiao Q; Ling Y; Gopishetty B; Pei D
    J Am Chem Soc; 2006 Oct; 128(39):13000-9. PubMed ID: 17002397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery.
    Sohrabi C; Foster A; Tavassoli A
    Nat Rev Chem; 2020 Feb; 4(2):90-101. PubMed ID: 37128052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection-based discovery of druglike macrocyclic peptides.
    Passioura T; Katoh T; Goto Y; Suga H
    Annu Rev Biochem; 2014; 83():727-52. PubMed ID: 24580641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides.
    Duffy FJ; O'Donovan D; Devocelle M; Moran N; O'Connell DJ; Shields DC
    J Chem Inf Model; 2015 Mar; 55(3):600-13. PubMed ID: 25668361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Editorial overview: Next generation therapeutics: Creating and exploiting the chemistry of large numbers.
    Scheuermann J; Neri D
    Curr Opin Chem Biol; 2015 Jun; 26():iv-v. PubMed ID: 25890575
    [No Abstract]   [Full Text] [Related]  

  • 17. Yeast two-hybrid screening of cyclic peptide libraries using a combination of random and PI-deconvolution pooling strategies.
    Barreto K; Aparicio A; Bharathikumar VM; DeCoteau JF; Geyer CR
    Protein Eng Des Sel; 2012 Sep; 25(9):453-64. PubMed ID: 22763264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic screening of phylomer peptide libraries derived from genome fragments to identify and validate new targets and therapeutics.
    Watt PM
    Future Med Chem; 2009 May; 1(2):257-65. PubMed ID: 21425969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational approaches to developing short cyclic peptide modulators of protein-protein interactions.
    Duffy FJ; Devocelle M; Shields DC
    Methods Mol Biol; 2015; 1268():241-71. PubMed ID: 25555728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Chemical Protein Synthesis and Random Nonstandard Peptides Integrated Discovery for Modulating Biological Processes.
    Saha A; Suga H; Brik A
    Acc Chem Res; 2023 Jul; 56(14):1953-1965. PubMed ID: 37312234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.