These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 25586497)
21. Fragment-based lead discovery on G-protein-coupled receptors. Visegrády A; Keserű GM Expert Opin Drug Discov; 2013 Jul; 8(7):811-20. PubMed ID: 23621346 [TBL] [Abstract][Full Text] [Related]
22. Affinity-based screening techniques: their impact and benefit to increase the number of high quality leads. Bergsdorf C; Ottl J Expert Opin Drug Discov; 2010 Nov; 5(11):1095-107. PubMed ID: 22827747 [TBL] [Abstract][Full Text] [Related]
23. Cheminformatics approaches to analyze diversity in compound screening libraries. Akella LB; DeCaprio D Curr Opin Chem Biol; 2010 Jun; 14(3):325-30. PubMed ID: 20457001 [TBL] [Abstract][Full Text] [Related]
24. In vitro genetic code reprogramming and expansion to study protein function and discover macrocyclic peptide ligands. Richardson SL; Dods KK; Abrigo NA; Iqbal ES; Hartman MC Curr Opin Chem Biol; 2018 Oct; 46():172-179. PubMed ID: 30077877 [TBL] [Abstract][Full Text] [Related]
25. Multicyclic Peptides as Scaffolds for the Development of Tumor Targeting Agents. Loktev A; Haberkorn U; Mier W Curr Med Chem; 2017; 24(20):2141-2155. PubMed ID: 28302013 [TBL] [Abstract][Full Text] [Related]
26. Split-intein mediated circular ligation used in the synthesis of cyclic peptide libraries in E. coli. Tavassoli A; Benkovic SJ Nat Protoc; 2007; 2(5):1126-33. PubMed ID: 17546003 [TBL] [Abstract][Full Text] [Related]
27. Mammalian Surface Display Screening of Diverse Cystine-Dense Peptide Libraries for Difficult-to-Drug Targets. Crook ZR; Sevilla GP; Mhyre AJ; Olson JM Methods Mol Biol; 2020; 2070():363-396. PubMed ID: 31625107 [TBL] [Abstract][Full Text] [Related]
28. De novo discovery of bioactive cyclic peptides using bacterial display and flow cytometry. Shivange AV; Daugherty PS Methods Mol Biol; 2015; 1248():139-53. PubMed ID: 25616331 [TBL] [Abstract][Full Text] [Related]
29. RNA Display Methods for the Discovery of Bioactive Macrocycles. Huang Y; Wiedmann MM; Suga H Chem Rev; 2019 Sep; 119(17):10360-10391. PubMed ID: 30395448 [TBL] [Abstract][Full Text] [Related]
30. Opportunities for Expanding Encoded Chemical Diversification and Improving Hit Enrichment in mRNA-Displayed Peptide Libraries. Melsen PRA; Yoshisada R; Jongkees SAK Chembiochem; 2022 Jun; 23(12):e202100685. PubMed ID: 35100479 [TBL] [Abstract][Full Text] [Related]
32. Encoded Library Technologies as Integrated Lead Finding Platforms for Drug Discovery. Ottl J; Leder L; Schaefer JV; Dumelin CE Molecules; 2019 Apr; 24(8):. PubMed ID: 31027189 [TBL] [Abstract][Full Text] [Related]
33. Application of combinatorial library methods in cancer research and drug discovery. Lam KS Anticancer Drug Des; 1997 Apr; 12(3):145-67. PubMed ID: 9154108 [TBL] [Abstract][Full Text] [Related]
34. Computational Opportunities and Challenges in Finding Cyclic Peptide Modulators of Protein-Protein Interactions. Duffy F; Maheshwari N; Buchete NV; Shields D Methods Mol Biol; 2019; 2001():73-95. PubMed ID: 31134568 [TBL] [Abstract][Full Text] [Related]
36. Developments with bead-based screening for novel drug discovery. Pei D; Appiah Kubi G Expert Opin Drug Discov; 2019 Nov; 14(11):1097-1102. PubMed ID: 31335229 [No Abstract] [Full Text] [Related]
37. Construction and screening of vast libraries of natural product-like macrocyclic peptides using in vitro display technologies. Bashiruddin NK; Suga H Curr Opin Chem Biol; 2015 Feb; 24():131-8. PubMed ID: 25483262 [TBL] [Abstract][Full Text] [Related]
38. Drugging challenging targets using fragment-based approaches. Coyne AG; Scott DE; Abell C Curr Opin Chem Biol; 2010 Jun; 14(3):299-307. PubMed ID: 20223699 [TBL] [Abstract][Full Text] [Related]