These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 25586560)

  • 41. Stimulation of Laccase Biocatalysis in Ionic Liquids: A Review on Recent Progress.
    Liu H; Wu X; Sun J; Chen S
    Curr Protein Pept Sci; 2018; 19(1):100-111. PubMed ID: 27875965
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of a new member of Pleurotus ostreatus laccase family from mature fruiting body.
    Lettera V; Piscitelli A; Leo G; Birolo L; Pezzella C; Sannia G
    Fungal Biol; 2010 Sep; 114(9):724-30. PubMed ID: 20943181
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A roadmap to directed enzyme evolution and screening systems for biotechnological applications.
    Martínez R; Schwaneberg U
    Biol Res; 2013; 46(4):395-405. PubMed ID: 24510142
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores.
    Gupta N; Farinas ET
    Protein Eng Des Sel; 2010 Aug; 23(8):679-82. PubMed ID: 20551082
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Statistical coupling analysis uncovers sites crucial for the proton transfer in laccase Lac15.
    Wang R; Cheng Y; Xie Y; Li J; Zhang Y; Fang Z; Fang W; Zhang X; Xiao Y
    Biochem Biophys Res Commun; 2019 Nov; 519(4):894-900. PubMed ID: 31563321
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expression of industrially relevant laccases: prokaryotic style.
    Santhanam N; Vivanco JM; Decker SR; Reardon KF
    Trends Biotechnol; 2011 Oct; 29(10):480-9. PubMed ID: 21640417
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineering and Applications of fungal laccases for organic synthesis.
    Kunamneni A; Camarero S; García-Burgos C; Plou FJ; Ballesteros A; Alcalde M
    Microb Cell Fact; 2008 Nov; 7():32. PubMed ID: 19019256
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of mutations near the T1 copper site on the biochemical characteristics of the small laccase from Streptomyces coelicolor A3(2).
    Prins A; Kleinsmidt L; Khan N; Kirby B; Kudanga T; Vollmer J; Pleiss J; Burton S; Le Roes-Hill M
    Enzyme Microb Technol; 2015 Jan; 68():23-32. PubMed ID: 25435502
    [TBL] [Abstract][Full Text] [Related]  

  • 49. How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates.
    Galli C; Gentili P; Jolivalt C; Madzak C; Vadalà R
    Appl Microbiol Biotechnol; 2011 Jul; 91(1):123-31. PubMed ID: 21468703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ancestral Resurrection and Directed Evolution of Fungal Mesozoic Laccases.
    Gomez-Fernandez BJ; Risso VA; Rueda A; Sanchez-Ruiz JM; Alcalde M
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414792
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanism of the salt activation of laccase Lac15.
    Li Z; Jiang S; Xie Y; Fang Z; Xiao Y; Fang W; Zhang X
    Biochem Biophys Res Commun; 2020 Jan; 521(4):997-1002. PubMed ID: 31727364
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimization of a small laccase by active-site redesign.
    Toscano MD; De Maria L; Lobedanz S; Ostergaard LH
    Chembiochem; 2013 Jul; 14(10):1209-11. PubMed ID: 23775916
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Can Laccase-Assisted Processing Conditions Influence the Structure of the Reaction Products?
    Su J; Fu J; Silva C; Cavaco-Paulo A
    Trends Biotechnol; 2019 Jul; 37(7):683-686. PubMed ID: 30926142
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhancement of catalysis and functional expression of a bacterial laccase by single amino acid replacement.
    Nasoohi N; Khajeh K; Mohammadian M; Ranjbar B
    Int J Biol Macromol; 2013 Sep; 60():56-61. PubMed ID: 23707861
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rational design for fungal laccase production in the model host Aspergillus nidulans.
    Li W; Yu J; Li Z; Yin WB
    Sci China Life Sci; 2019 Jan; 62(1):84-94. PubMed ID: 29909473
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Directed evolution: tailoring biocatalysts for industrial applications.
    Kumar A; Singh S
    Crit Rev Biotechnol; 2013 Dec; 33(4):365-78. PubMed ID: 22985113
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel thermophilic laccase-like multicopper oxidase from Thermothelomyces thermophila and its application in the oxidative cyclization of 2',3,4-trihydroxychalcone.
    Zerva A; Koutroufini E; Kostopoulou I; Detsi A; Topakas E
    N Biotechnol; 2019 Mar; 49():10-18. PubMed ID: 30529567
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Colorimetric High-Throughput Screening Assays for the Directed Evolution of Fungal Laccases.
    Pardo I; Camarero S
    Methods Mol Biol; 2018; 1685():247-254. PubMed ID: 29086313
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of Glu498 in the dioxygen reactivity of CotA-laccase from Bacillus subtilis.
    Chen Z; Durão P; Silva CS; Pereira MM; Todorovic S; Hildebrandt P; Bento I; Lindley PF; Martins LO
    Dalton Trans; 2010 Mar; 39(11):2875-82. PubMed ID: 20200715
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Three-dimensional structures of laccases.
    Hakulinen N; Rouvinen J
    Cell Mol Life Sci; 2015 Mar; 72(5):857-68. PubMed ID: 25586561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.