These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 25586561)

  • 21. Structure-function studies of a novel laccase-like multicopper oxidase from Thermothelomyces thermophila provide insights into its biological role.
    Kosinas C; Zerva A; Topakas E; Dimarogona M
    Acta Crystallogr D Struct Biol; 2023 Jul; 79(Pt 7):641-654. PubMed ID: 37326583
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multicopper oxidases: modular structure, sequence space, and evolutionary relationships.
    Gräff M; Buchholz PCF; Le Roes-Hill M; Pleiss J
    Proteins; 2020 Oct; 88(10):1329-1339. PubMed ID: 32447824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laccases of prokaryotic origin: enzymes at the interface of protein science and protein technology.
    Martins LO; Durão P; Brissos V; Lindley PF
    Cell Mol Life Sci; 2015 Mar; 72(5):911-22. PubMed ID: 25572294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Structure, catalytic mechanism and applications of laccases: a review].
    Ge H; Wu Y; Xiao Y
    Sheng Wu Gong Cheng Xue Bao; 2011 Feb; 27(2):156-63. PubMed ID: 21650039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cupredoxins--a study of how proteins may evolve to use metals for bioenergetic processes.
    Choi M; Davidson VL
    Metallomics; 2011 Feb; 3(2):140-51. PubMed ID: 21258692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the L499M mutation of the ascomycetous Botrytis aclada laccase on redox potential and catalytic properties.
    Osipov E; Polyakov K; Kittl R; Shleev S; Dorovatovsky P; Tikhonova T; Hann S; Ludwig R; Popov V
    Acta Crystallogr D Biol Crystallogr; 2014 Nov; 70(Pt 11):2913-23. PubMed ID: 25372682
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Laccase enzymes: purification, structure to catalysis and tailoring.
    Moin SF; Omar MN
    Protein Pept Lett; 2014; 21(8):707-13. PubMed ID: 23855667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of native laccase B from Trametes sp. AH28-2.
    Ge H; Gao Y; Hong Y; Zhang M; Xiao Y; Teng M; Niu L
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Mar; 66(Pt 3):254-8. PubMed ID: 20208154
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparative structural analysis of the surface properties of asco-laccases.
    Ernst HA; Jørgensen LJ; Bukh C; Piontek K; Plattner DA; Østergaard LH; Larsen S; Bjerrum MJ
    PLoS One; 2018; 13(11):e0206589. PubMed ID: 30395580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of SLAC: a small laccase from Streptomyces coelicolor with unprecedented activity.
    Machczynski MC; Vijgenboom E; Samyn B; Canters GW
    Protein Sci; 2004 Sep; 13(9):2388-97. PubMed ID: 15295117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectroscopic and computational characterization of laccases and their substrate radical intermediates.
    Pogni R; Baratto MC; Sinicropi A; Basosi R
    Cell Mol Life Sci; 2015 Mar; 72(5):885-96. PubMed ID: 25595303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laccase: a multi-purpose biocatalyst at the forefront of biotechnology.
    Mate DM; Alcalde M
    Microb Biotechnol; 2017 Nov; 10(6):1457-1467. PubMed ID: 27696775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. "Blue" laccases.
    Morozova OV; Shumakovich GP; Gorbacheva MA; Shleev SV; Yaropolov AI
    Biochemistry (Mosc); 2007 Oct; 72(10):1136-50. PubMed ID: 18021071
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expanding the laccase-toolbox: a laccase from Corynebacterium glutamicum with phenol coupling and cuprous oxidase activity.
    Ricklefs E; Winkler N; Koschorreck K; Urlacher VB
    J Biotechnol; 2014 Dec; 191():46-53. PubMed ID: 24910971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Incorporation of Copper Ions into T2/T3 Centers of Two-Domain Laccases].
    Gabdulkhakov AG; Kostareva OS; Kolyadenko IA; Mikhaylina AO; Trubitsina LI; Tishchenko SV
    Mol Biol (Mosk); 2018; 52(1):29-35. PubMed ID: 29512633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Designer laccases: a vogue for high-potential fungal enzymes?
    Rodgers CJ; Blanford CF; Giddens SR; Skamnioti P; Armstrong FA; Gurr SJ
    Trends Biotechnol; 2010 Feb; 28(2):63-72. PubMed ID: 19963293
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural studies of two thermostable laccases from the white-rot fungus Pycnoporus sanguineus.
    Orlikowska M; de J Rostro-Alanis M; Bujacz A; Hernández-Luna C; Rubio R; Parra R; Bujacz G
    Int J Biol Macromol; 2018 Feb; 107(Pt B):1629-1640. PubMed ID: 29055703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical redox transformations of T1 and T2 copper sites in native Trametes hirsuta laccase at gold electrode.
    Shleev S; Christenson A; Serezhenkov V; Burbaev D; Yaropolov A; Gorton L; Ruzgas T
    Biochem J; 2005 Feb; 385(Pt 3):745-54. PubMed ID: 15453829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laccase Gene Family in Cerrena sp. HYB07: Sequences, Heterologous Expression and Transcriptional Analysis.
    Yang J; Xu X; Ng TB; Lin J; Ye X
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27527131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laccases with Variable Properties from Different Strains of
    Glazunova OA; Moiseenko KV; Kamenihina IA; Isaykina TU; Yaropolov AI; Fedorova TV
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31022851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.