These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25586563)

  • 1. Inferring the microscopic surface energy of protein-protein interfaces from mutation data.
    Moal IH; Dapkūnas J; Fernández-Recio J
    Proteins; 2015 Apr; 83(4):640-50. PubMed ID: 25586563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations.
    Verkhivker GM
    Pac Symp Biocomput; 1996; ():638-52. PubMed ID: 9390264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MIAX: a new paradigm for modeling biomacromolecular interactions and complex formation in condensed phases.
    Del Carpio-Muñoz CA; Ichiishi E; Yoshimori A; Yoshikawa T
    Proteins; 2002 Sep; 48(4):696-732. PubMed ID: 12211037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A continuum model for protein-protein interactions: application to the docking problem.
    Jackson RM; Sternberg MJ
    J Mol Biol; 1995 Jul; 250(2):258-75. PubMed ID: 7541840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of an empirical free energy function for calculating protein-protein binding free energy surfaces.
    Audie J
    Biophys Chem; 2009 Feb; 139(2-3):84-91. PubMed ID: 19041170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A physical reference state unifies the structure-derived potential of mean force for protein folding and binding.
    Liu S; Zhang C; Zhou H; Zhou Y
    Proteins; 2004 Jul; 56(1):93-101. PubMed ID: 15162489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CCharPPI web server: computational characterization of protein-protein interactions from structure.
    Moal IH; Jiménez-García B; Fernández-Recio J
    Bioinformatics; 2015 Jan; 31(1):123-5. PubMed ID: 25183488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific empirical free energy function for automated docking of carbohydrates to proteins.
    Laederach A; Reilly PJ
    J Comput Chem; 2003 Nov; 24(14):1748-57. PubMed ID: 12964193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A semiempirical free energy force field with charge-based desolvation.
    Huey R; Morris GM; Olson AJ; Goodsell DS
    J Comput Chem; 2007 Apr; 28(6):1145-52. PubMed ID: 17274016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of protein-protein docking model structures using all-atom molecular dynamics simulations combined with the solution theory in the energy representation.
    Takemura K; Guo H; Sakuraba S; Matubayasi N; Kitao A
    J Chem Phys; 2012 Dec; 137(21):215105. PubMed ID: 23231264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular principles of the interactions of disordered proteins.
    Mészáros B; Tompa P; Simon I; Dosztányi Z
    J Mol Biol; 2007 Sep; 372(2):549-61. PubMed ID: 17681540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model study of protein unfolding by interfaces.
    Chakarova SD; Carlsson AE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021907. PubMed ID: 14995491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Docking enzyme-inhibitor complexes using a preference-based free-energy surface.
    Wallqvist A; Covell DG
    Proteins; 1996 Aug; 25(4):403-19. PubMed ID: 8865336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free energetics of rigid body association of ubiquitin binding domains: a biochemical model for binding mediated by hydrophobic interaction.
    Cui D; Ou S; Patel S
    Proteins; 2014 Jul; 82(7):1453-68. PubMed ID: 24425498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability scale and atomic solvation parameters extracted from 1023 mutation experiments.
    Zhou H; Zhou Y
    Proteins; 2002 Dec; 49(4):483-92. PubMed ID: 12402358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pyDockEneRes: per-residue decomposition of protein-protein docking energy.
    Romero-Durana M; Jiménez-García B; Fernández-Recio J
    Bioinformatics; 2020 Apr; 36(7):2284-2285. PubMed ID: 31808797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SDOCK: a global protein-protein docking program using stepwise force-field potentials.
    Zhang C; Lai L
    J Comput Chem; 2011 Sep; 32(12):2598-612. PubMed ID: 21618559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HotLig: a molecular surface-directed approach to scoring protein-ligand interactions.
    Wang SH; Wu YT; Kuo SC; Yu J
    J Chem Inf Model; 2013 Aug; 53(8):2181-95. PubMed ID: 23862697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular docking of superantigens with class II major histocompatibility complex proteins.
    Olson MA; Cuff L
    J Mol Recognit; 1997; 10(6):277-89. PubMed ID: 9770652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying protein microstructure and electrostatic effects on the change in Gibbs free energy of binding in immobilized metal affinity chromatography.
    Pathange LP; Bevan DR; Zhang C
    Anal Chem; 2008 Mar; 80(5):1628-40. PubMed ID: 18229947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.