These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 25586585)
1. Engineering of Escherichia coli for the biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from glucose. Wang Q; Luan Y; Cheng X; Zhuang Q; Qi Q Appl Microbiol Biotechnol; 2015 Mar; 99(6):2593-602. PubMed ID: 25586585 [TBL] [Abstract][Full Text] [Related]
2. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Jeon JM; Brigham CJ; Kim YH; Kim HJ; Yi DH; Kim H; Rha C; Sinskey AJ; Yang YH Appl Microbiol Biotechnol; 2014 Jun; 98(12):5461-9. PubMed ID: 24615385 [TBL] [Abstract][Full Text] [Related]
3. Production of poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) with flexible 3-hydroxyhexanoate content in Aeromonas hydrophila CGMCC 0911. Lu XY; Wu Q; Chen GQ Appl Microbiol Biotechnol; 2004 Mar; 64(1):41-5. PubMed ID: 12920488 [TBL] [Abstract][Full Text] [Related]
4. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Budde CF; Riedel SL; Willis LB; Rha C; Sinskey AJ Appl Environ Microbiol; 2011 May; 77(9):2847-54. PubMed ID: 21398488 [TBL] [Abstract][Full Text] [Related]
5. Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha. Bhatia SK; Kim JH; Kim MS; Kim J; Hong JW; Hong YG; Kim HJ; Jeon JM; Kim SH; Ahn J; Lee H; Yang YH Bioprocess Biosyst Eng; 2018 Feb; 41(2):229-235. PubMed ID: 29124334 [TBL] [Abstract][Full Text] [Related]
6. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by metabolically engineered Escherichia coli strains. Park SJ; Ahn WS; Green PR; Lee SY Biomacromolecules; 2001; 2(1):248-54. PubMed ID: 11749180 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis of enantiopure (S)-3-hydroxybutyrate from glucose through the inverted fatty acid β-oxidation pathway by metabolically engineered Escherichia coli. Gulevich AY; Skorokhodova AY; Sukhozhenko AV; Debabov VG J Biotechnol; 2017 Feb; 244():16-24. PubMed ID: 28131860 [TBL] [Abstract][Full Text] [Related]
8. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) production from engineered Ralstonia eutropha using synthetic and anaerobically digested food waste derived volatile fatty acids. Bhatia SK; Gurav R; Choi TR; Jung HR; Yang SY; Song HS; Jeon JM; Kim JS; Lee YK; Yang YH Int J Biol Macromol; 2019 Jul; 133():1-10. PubMed ID: 30986452 [TBL] [Abstract][Full Text] [Related]
9. Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Yang JE; Choi YJ; Lee SJ; Kang KH; Lee H; Oh YH; Lee SH; Park SJ; Lee SY Appl Microbiol Biotechnol; 2014 Jan; 98(1):95-104. PubMed ID: 24113828 [TBL] [Abstract][Full Text] [Related]
11. Modification of acetoacetyl-CoA reduction step in Ralstonia eutropha for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from structurally unrelated compounds. Zhang M; Kurita S; Orita I; Nakamura S; Fukui T Microb Cell Fact; 2019 Aug; 18(1):147. PubMed ID: 31466527 [TBL] [Abstract][Full Text] [Related]
12. Combining molecular and bioprocess techniques to produce poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with controlled monomer composition by Burkholderia sacchari. Mendonça TT; Tavares RR; Cespedes LG; Sánchez-Rodriguez RJ; Schripsema J; Taciro MK; Gomez JG; Silva LF Int J Biol Macromol; 2017 May; 98():654-663. PubMed ID: 28167112 [TBL] [Abstract][Full Text] [Related]
13. Biosynthesis of poly(glycolate-co-3-hydroxybutyrate-co-3-hydroxyhexanoate) in Escherichia coli expressing sequence-regulating polyhydroxyalkanoate synthase and medium-chain-length 3-hydroxyalkanoic acid coenzyme A ligase. Tomita H; Satoh K; Nomura CT; Matsumoto K Biosci Biotechnol Biochem; 2022 Jan; 86(2):217-223. PubMed ID: 34788370 [TBL] [Abstract][Full Text] [Related]
14. Study of the Production of Poly(Hydroxybutyrate- Cabecas Segura P; Onderwater R; Deutschbauer A; Dewasme L; Wattiez R; Leroy B Appl Environ Microbiol; 2022 Mar; 88(6):e0158621. PubMed ID: 35080906 [TBL] [Abstract][Full Text] [Related]
15. Improved artificial pathway for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with high C6-monomer composition from fructose in Ralstonia eutropha. Insomphun C; Xie H; Mifune J; Kawashima Y; Orita I; Nakamura S; Fukui T Metab Eng; 2015 Jan; 27():38-45. PubMed ID: 25446974 [TBL] [Abstract][Full Text] [Related]
16. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from gluconate and glucose by recombinant Aeromonas hydrophila and Pseudomonas putida. Qiu YZ; Han J; Guo JJ; Chen GQ Biotechnol Lett; 2005 Sep; 27(18):1381-6. PubMed ID: 16215853 [TBL] [Abstract][Full Text] [Related]
17. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose with elevated 3-hydroxyvalerate fraction via combined citramalate and threonine pathway in Escherichia coli. Wang Q; Liu X; Qi Q Appl Microbiol Biotechnol; 2014 May; 98(9):3923-31. PubMed ID: 24425304 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering of Aeromonas hydrophila for the enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Qiu YZ; Han J; Chen GQ Appl Microbiol Biotechnol; 2006 Jan; 69(5):537-42. PubMed ID: 15983806 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of gene expression cassettes and production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a fine modulated monomer composition by using it in Cupriavidus necator. Arikawa H; Matsumoto K Microb Cell Fact; 2016 Oct; 15(1):184. PubMed ID: 27793142 [TBL] [Abstract][Full Text] [Related]
20. Biosynthesis of poly(2-hydroxyisovalerate-co-lactate) by metabolically engineered Escherichia coli. Yang JE; Kim JW; Oh YH; Choi SY; Lee H; Park AR; Shin J; Park SJ; Lee SY Biotechnol J; 2016 Dec; 11(12):1572-1585. PubMed ID: 27600064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]