These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 2558678)
1. Ability of periaqueductal gray subdivisions and adjacent loci to elicit analgesia and ability of naloxone to reverse analgesia. Thorn BE; Applegate L; Johnson SW Behav Neurosci; 1989 Dec; 103(6):1335-9. PubMed ID: 2558678 [TBL] [Abstract][Full Text] [Related]
2. Ketamine analgesia is not related to an opiate action in the periaqueductal gray region of the rat brain. Smith DJ; Perrotti JM; Mansell AL; Monroe PJ Pain; 1985 Mar; 21(3):253-265. PubMed ID: 2986072 [TBL] [Abstract][Full Text] [Related]
3. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. II. Differential characteristics of the analgesia induced by ventral and dorsal PAG stimulation. Fardin V; Oliveras JL; Besson JM Brain Res; 1984 Jul; 306(1-2):125-39. PubMed ID: 6466968 [TBL] [Abstract][Full Text] [Related]
4. Opiate and serotonergic mechanisms of stimulation-produced analgesia within the periaqueductal gray. Nichols DS; Thorn BE; Berntson GG Brain Res Bull; 1989 Apr; 22(4):717-24. PubMed ID: 2736397 [TBL] [Abstract][Full Text] [Related]
5. The relative efficacy of monopolar vs. bipolar electrodes in stimulation-produced analgesia. Thorn BE; Applegate L; Jones K Exp Brain Res; 1990; 79(2):266-70. PubMed ID: 2323373 [TBL] [Abstract][Full Text] [Related]
6. Genetic influences on brain stimulation-produced analgesia in mice: II. Correlation with brain opiate receptor concentration. Marek P; Yirmiya R; Liebeskind JC Brain Res; 1990 Jan; 507(1):155-7. PubMed ID: 2154297 [TBL] [Abstract][Full Text] [Related]
7. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. I. The production of behavioral side effects together with analgesia. Fardin V; Oliveras JL; Besson JM Brain Res; 1984 Jul; 306(1-2):105-23. PubMed ID: 6540613 [TBL] [Abstract][Full Text] [Related]
8. Stimulation-produced analgesia and its cross-tolerance between dorsal and ventral PAG loci. Nichols DS; Thorn BE Pain; 1990 Jun; 41(3):347-352. PubMed ID: 2388771 [TBL] [Abstract][Full Text] [Related]
9. An electrophysiological characterization of the projection from the central nucleus of the amygdala to the periaqueductal gray of the rat: the role of opioid receptors. da Costa Gomez TM; Behbehani MM Brain Res; 1995 Aug; 689(1):21-31. PubMed ID: 8528703 [TBL] [Abstract][Full Text] [Related]
10. Antagonism of stimulation-produced analgesia by naloxone and N-methyl-D-aspartate: role of opioid and N-methyl-D-aspartate receptors. Mehta AK; Halder S; Khanna N; Tandon OP; Sharma KK Hum Exp Toxicol; 2012 Jan; 31(1):51-6. PubMed ID: 21803783 [TBL] [Abstract][Full Text] [Related]
11. Site specificity in the development of tolerance to stimulation-produced analgesia from the periaqueductal gray matter of the rat. Morgan MM; Liebeskind JC Brain Res; 1987 Nov; 425(2):356-9. PubMed ID: 3427436 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of mesencephalic morphine analgesia by methysergide in the medial ventral medulla of rats. Kiefel JM; Cooper ML; Bodnar RJ Physiol Behav; 1992 Jan; 51(1):201-5. PubMed ID: 1311108 [TBL] [Abstract][Full Text] [Related]
14. Neuroanatomical and neuropharmacological study of opioid pathways in the mesencephalic tectum: effect of mu(1)- and kappa-opioid receptor blockade on escape behavior induced by electrical stimulation of the inferior colliculus. Osaki MY; Castellan-Baldan L; Calvo F; Carvalho AD; Felippotti TT; de Oliveira R; Ubiali WA; Paschoalin-Maurin T; Elias-Filho DH; Motta V; da Silva LA; Coimbra NC Brain Res; 2003 Dec; 992(2):179-92. PubMed ID: 14625057 [TBL] [Abstract][Full Text] [Related]
15. Elevated gamma band power in humans receiving naloxone suggests dorsal periaqueductal and periventricular gray deep brain stimulation produced analgesia is opioid mediated. Pereira EA; Wang S; Peachey T; Lu G; Shlugman D; Stein JF; Aziz TZ; Green AL Exp Neurol; 2013 Jan; 239():248-55. PubMed ID: 23127542 [TBL] [Abstract][Full Text] [Related]
16. The dorsal raphe nucleus: a re-evaluation of its proposed role in opiate analgesia systems. Klatt DS; Guinan MJ; Culhane ES; Carstens E; Watkins LR Brain Res; 1988 May; 447(2):246-52. PubMed ID: 3390696 [TBL] [Abstract][Full Text] [Related]
17. Antiallodynic effects produced by stimulation of the periaqueductal gray matter in a rat model of neuropathic pain. Lee BH; Park SH; Won R; Park YG; Sohn JH Neurosci Lett; 2000 Sep; 291(1):29-32. PubMed ID: 10962146 [TBL] [Abstract][Full Text] [Related]
18. Periaqueductal gray stimulation produces a spinally mediated, opioid antinociception for the inflamed hindpaw of the rat. Morgan MM; Gold MS; Liebeskind JC; Stein C Brain Res; 1991 Apr; 545(1-2):17-23. PubMed ID: 1860042 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the antinociceptive action of mu and delta opioid receptor ligands in the periaqueductal gray matter, medial and paramedial ventral medulla in the rat as studied by the microinjection technique. Jensen TS; Yaksh TL Brain Res; 1986 May; 372(2):301-12. PubMed ID: 2871901 [TBL] [Abstract][Full Text] [Related]
20. Analgesia from the periaqueductal gray in the developing rat: focal injections of morphine or glutamate and effects of intrathecal injection of methysergide or phentolamine. Tive LA; Barr GA Brain Res; 1992 Jul; 584(1-2):92-109. PubMed ID: 1355395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]