These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2558678)

  • 41. The effects of naloxone administered into the periaqueductal gray on shock-elicited freezing behavior in the rat.
    Hammer GD; Kapp BS
    Behav Neural Biol; 1986 Sep; 46(2):189-95. PubMed ID: 3767831
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Partial involvement of monoamines and opiates in the inhibition of rat spinal nociceptive neurons evoked by stimulation in midbrain periaqueductal gray or lateral reticular formation.
    Carstens E; Culhane ES; Banisadr R
    Brain Res; 1990 Jul; 522(1):7-13. PubMed ID: 2224516
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Effect of orphanin FQ on acupuncture analgesia and noxious stimulation in the periaqueductal gray].
    Wang H; Zhu CB; Cao XD; Wu GC
    Sheng Li Xue Bao; 1998 Jun; 50(3):263-7. PubMed ID: 11324565
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stimulation-produced analgesia under repeated morphine treatment in rats.
    Morozova AS; Zvartau EE
    Pharmacol Biochem Behav; 1986 Sep; 25(3):533-6. PubMed ID: 3774819
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antinociception induced by PAG-microinjected dipyrone (metamizol) in rats: involvement of spinal endogenous opioids.
    Hernández N; Vanegas H
    Brain Res; 2001 Mar; 896(1-2):175-8. PubMed ID: 11277989
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Naloxone injections into the periaqueductal grey area and arcuate nucleus block analgesia in defeated mice.
    Miczek KA; Thompson ML; Shuster L
    Psychopharmacology (Berl); 1985; 87(1):39-42. PubMed ID: 2932763
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Morphine action on cholecystokinin octapeptide release from rat periaqueductal grey slices: sensitisation by naloxone.
    Rattray M; de Belleroche J
    Neuropeptides; 1987; 10(2):189-200. PubMed ID: 3683773
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitrous oxide analgesia: partial antagonism by naloxone and total reversal after periaqueductal gray lesions in the rat.
    Zuniga J; Joseph S; Knigge K
    Eur J Pharmacol; 1987 Oct; 142(1):51-60. PubMed ID: 3691637
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Naloxone partial reversal of the antinociception produced by dipyrone microinjected into the periaqueductal gray of rats. Possible involvement of medullary off- and on-cells.
    Tortorici V; Vásquez E; Vanegas H
    Brain Res; 1996 Jun; 725(1):106-10. PubMed ID: 8828592
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Depletion of central beta-endorphin blocks midbrain stimulation produced analgesia in the freely-moving rat.
    Millan MH; Millan MJ; Herz A
    Neuroscience; 1986 Jul; 18(3):641-9. PubMed ID: 2944030
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Substance P-induced release of Met5-enkephalin from striatal and periaqueductal gray slices.
    Del Río J; Naranjo JR; Yang HY; Costa E
    Brain Res; 1983 Nov; 279(1-2):121-6. PubMed ID: 6196090
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mapping of jumping, rearing, squealing and switch-off behaviors elicited by periaqueductal gray stimulation in the rat.
    Sandner G; Schmitt P; Karli P
    Physiol Behav; 1987; 39(3):333-9. PubMed ID: 3575473
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pain relief by electrical stimulation of the periaqueductal and periventricular gray matter. Evidence for a non-opioid mechanism.
    Young RF; Chambi VI
    J Neurosurg; 1987 Mar; 66(3):364-71. PubMed ID: 3493333
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dissociated mesencephalic responses to medial and ventral thalamic nuclei stimulation in rats. Relationship to analgesic mechanisms.
    Sakata S; Shima F; Kato M; Fukui M
    J Neurosurg; 1989 Mar; 70(3):446-53. PubMed ID: 2915252
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Naloxone blocks the release of opioid peptides in periaqueductal gray and N. accumbens induced by intra-amygdaloid injection of morphine.
    Ma QP; Han JS
    Peptides; 1991; 12(6):1235-8. PubMed ID: 1815211
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Morphine analgesia mediated by activation of the acupuncture-analgesia-producing system.
    Sato T; Takeshige C; Shimizu S
    Acupunct Electrother Res; 1991; 16(1-2):13-26. PubMed ID: 1674831
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Does naloxone suppress self-stimulation by decreasing reward or by increasing aversion?
    Kelsey JE; Belluzzi JD; Stein L
    Brain Res; 1984 Jul; 307(1-2):55-9. PubMed ID: 6467008
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of antinociceptive action of morphine in the periaqueductal gray, medial and paramedial medulla in rat.
    Jensen TS; Yaksh TL
    Brain Res; 1986 Jan; 363(1):99-113. PubMed ID: 3004644
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evidence for opioid and non-opioid forms of stimulation-produced analgesia in the rat.
    Cannon JT; Prieto GJ; Lee A; Liebeskind JC
    Brain Res; 1982 Jul; 243(2):315-21. PubMed ID: 7104742
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kappa-receptor antagonist reverse 'non-opioid' stress-induced analgesia.
    Panerai AE; Martini A; Sacerdote P; Mantegazza P
    Brain Res; 1984 Jun; 304(1):153-6. PubMed ID: 6331578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.