These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 25587192)

  • 1. MAPK feedback encodes a switch and timer for tunable stress adaptation in yeast.
    English JG; Shellhammer JP; Malahe M; McCarter PC; Elston TC; Dohlman HG
    Sci Signal; 2015 Jan; 8(359):ra5. PubMed ID: 25587192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hog1: 20 years of discovery and impact.
    Brewster JL; Gustin MC
    Sci Signal; 2014 Sep; 7(343):re7. PubMed ID: 25227612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A systems-biology analysis of feedback inhibition in the Sho1 osmotic-stress-response pathway.
    Hao N; Behar M; Parnell SC; Torres MP; Borchers CH; Elston TC; Dohlman HG
    Curr Biol; 2007 Apr; 17(8):659-67. PubMed ID: 17363249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel feedback loops control the basal activity of the HOG MAPK signaling cascade.
    Sharifian H; Lampert F; Stojanovski K; Regot S; Vaga S; Buser R; Lee SS; Koeppl H; Posas F; Pelet S; Peter M
    Integr Biol (Camb); 2015 Apr; 7(4):412-22. PubMed ID: 25734609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems biology. Enlightening Rhythms.
    Lipan O
    Science; 2008 Jan; 319(5862):417-8. PubMed ID: 18218882
    [No Abstract]   [Full Text] [Related]  

  • 6. The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae.
    Mettetal JT; Muzzey D; Gómez-Uribe C; van Oudenaarden A
    Science; 2008 Jan; 319(5862):482-4. PubMed ID: 18218902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initiation of the transcriptional response to hyperosmotic shock correlates with the potential for volume recovery.
    Geijer C; Medrala-Klein D; Petelenz-Kurdziel E; Ericsson A; Smedh M; Andersson M; Goksör M; Nadal-Ribelles M; Posas F; Krantz M; Nordlander B; Hohmann S
    FEBS J; 2013 Aug; 280(16):3854-67. PubMed ID: 23758973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic signaling in the Hog1 MAPK pathway relies on high basal signal transduction.
    Macia J; Regot S; Peeters T; Conde N; Solé R; Posas F
    Sci Signal; 2009 Mar; 2(63):ra13. PubMed ID: 19318625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zooming in on yeast osmoadaptation.
    Kühn C; Klipp E
    Adv Exp Med Biol; 2012; 736():293-310. PubMed ID: 22161336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast osmoregulation.
    Hohmann S; Krantz M; Nordlander B
    Methods Enzymol; 2007; 428():29-45. PubMed ID: 17875410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-dependent quantitative multicomponent control of the G₁-S network by the stress-activated protein kinase Hog1 upon osmostress.
    Adrover MÀ; Zi Z; Duch A; Schaber J; González-Novo A; Jimenez J; Nadal-Ribelles M; Clotet J; Klipp E; Posas F
    Sci Signal; 2011 Sep; 4(192):ra63. PubMed ID: 21954289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms.
    Tanaka K; Tatebayashi K; Nishimura A; Yamamoto K; Yang HY; Saito H
    Sci Signal; 2014 Feb; 7(314):ra21. PubMed ID: 24570489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: use of an analog-sensitive HOG1 allele.
    Westfall PJ; Thorner J
    Eukaryot Cell; 2006 Aug; 5(8):1215-28. PubMed ID: 16896207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative study of the Hog1 MAPK response to fluctuating osmotic stress in Saccharomyces cerevisiae.
    Zi Z; Liebermeister W; Klipp E
    PLoS One; 2010 Mar; 5(3):e9522. PubMed ID: 20209100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulating global sumoylation by a MAP kinase Hog1 and its potential role in osmo-tolerance in yeast.
    Abu Irqeba A; Li Y; Panahi M; Zhu M; Wang Y
    PLoS One; 2014; 9(2):e87306. PubMed ID: 24498309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast.
    Schaber J; Baltanas R; Bush A; Klipp E; Colman-Lerner A
    Mol Syst Biol; 2012; 8():622. PubMed ID: 23149687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal integration in budding yeast.
    Waltermann C; Klipp E
    Biochem Soc Trans; 2010 Oct; 38(5):1257-64. PubMed ID: 20863295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway.
    Tatebayashi K; Takekawa M; Saito H
    EMBO J; 2003 Jul; 22(14):3624-34. PubMed ID: 12853477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model-based study delineating the roles of the two signaling branches of Saccharomyces cerevisiae, Sho1 and Sln1, during adaptation to osmotic stress.
    Parmar JH; Bhartiya S; Venkatesh KV
    Phys Biol; 2009 Aug; 6(3):036019. PubMed ID: 19657148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient activation of the HOG MAPK pathway regulates bimodal gene expression.
    Pelet S; Rudolf F; Nadal-Ribelles M; de Nadal E; Posas F; Peter M
    Science; 2011 May; 332(6030):732-5. PubMed ID: 21551064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.