BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2558730)

  • 1. Replacement of a conserved proline and the alkaline conformational change in iso-2-cytochrome c.
    Nall BT; Zuniga EH; White TB; Wood LC; Ramdas L
    Biochemistry; 1989 Dec; 28(25):9834-9. PubMed ID: 2558730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guanidine hydrochloride induced equilibrium unfolding of mutant forms of iso-1-cytochrome c with replacement of proline-71.
    Ramdas L; Sherman F; Nall BT
    Biochemistry; 1986 Nov; 25(22):6952-8. PubMed ID: 3026439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in conformation and slow refolding kinetics in mutant iso-2-cytochrome c with replacement of a conserved proline residue.
    White TB; Berget PB; Nall BT
    Biochemistry; 1987 Jul; 26(14):4358-66. PubMed ID: 2822088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replacement of a conserved proline eliminates the absorbance-detected slow folding phase of iso-2-cytochrome c.
    Wood LC; White TB; Ramdas L; Nall BT
    Biochemistry; 1988 Nov; 27(23):8562-8. PubMed ID: 2851328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding/unfolding kinetics of mutant forms of iso-1-cytochrome c with replacement of proline-71.
    Ramdas L; Nall BT
    Biochemistry; 1986 Nov; 25(22):6959-64. PubMed ID: 3026440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and characterization of mutant iso-2-cytochromes c with replacement of conserved prolines.
    Wood LC; Muthukrishnan K; White TB; Ramdas L; Nall BT
    Biochemistry; 1988 Nov; 27(23):8554-61. PubMed ID: 2851327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutation-induced perturbation of the cytochrome c alkaline transition.
    Pearce LL; Gärtner AL; Smith M; Mauk AG
    Biochemistry; 1989 Apr; 28(8):3152-6. PubMed ID: 2545249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-induced conformation changes and equilibrium unfolding in yeast iso-2 cytochrome c.
    Osterhout JJ; Muthukrishnan K; Nall BT
    Biochemistry; 1985 Nov; 24(23):6680-4. PubMed ID: 3002448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization.
    Pierce MM; Nall BT
    J Mol Biol; 2000 May; 298(5):955-69. PubMed ID: 10801361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the dynamics of a His73-heme alkaline transition in a destabilized variant of yeast iso-1-cytochrome c with conformationally gated electron transfer methods.
    Bandi S; Bowler BE
    Biochemistry; 2011 Nov; 50(46):10027-40. PubMed ID: 22026475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Native or nativelike species are transient intermediates in folding of alkaline iso-2 cytochrome c.
    Nall BT
    Biochemistry; 1986 May; 25(10):2974-8. PubMed ID: 3013289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH dependence of formation of a partially unfolded state of a Lys 73 --> His variant of iso-1-cytochrome c: implications for the alkaline conformational transition of cytochrome c.
    Nelson CJ; Bowler BE
    Biochemistry; 2000 Nov; 39(44):13584-94. PubMed ID: 11063596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutation of asparagine 52 to glycine promotes the alkaline form of iso-1-cytochrome c and causes loss of cooperativity in acid unfolding.
    Baddam S; Bowler BE
    Biochemistry; 2006 Apr; 45(14):4611-9. PubMed ID: 16584196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkaline conformational transition and gated electron transfer with a Lys 79 --> his variant of iso-1-cytochrome c.
    Bandi S; Baddam S; Bowler BE
    Biochemistry; 2007 Sep; 46(37):10643-54. PubMed ID: 17713929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding and oxidation of mutant cytochromes c by cytochrome-c oxidase.
    Michel B; Mauk AG; Bosshard HR
    FEBS Lett; 1989 Jan; 243(2):149-52. PubMed ID: 2537228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical, kinetic, and circular dichroic consequences of mutations at position 82 of yeast iso-1-cytochrome c.
    Rafferty SP; Pearce LL; Barker PD; Guillemette JG; Kay CM; Smith M; Mauk AG
    Biochemistry; 1990 Oct; 29(40):9365-9. PubMed ID: 2174257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of an alkaline transition intermediate stabilized in the Phe82Trp variant of yeast iso-1-cytochrome c.
    Rosell FI; Harris TR; Hildebrand DP; Döpner S; Hildebrandt P; Mauk AG
    Biochemistry; 2000 Aug; 39(30):9047-54. PubMed ID: 10913318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of phenylalanine-82 in yeast iso-1-cytochrome c and remote conformational changes induced by a serine residue at this position.
    Louie GV; Pielak GJ; Smith M; Brayer GD
    Biochemistry; 1988 Oct; 27(20):7870-6. PubMed ID: 2849996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substitutions of proline 76 in yeast iso-1-cytochrome c. Analysis of residues compatible and incompatible with folding requirements.
    Ernst JF; Hampsey DM; Stewart JW; Rackovsky S; Goldstein D; Sherman F
    J Biol Chem; 1985 Oct; 260(24):13225-36. PubMed ID: 2997158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.