These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2558736)

  • 1. Microcalorimetric studies of conformational transitions of ferricytochrome c in acidic solution.
    Potekhin S; Pfeil W
    Biophys Chem; 1989 Sep; 34(1):55-62. PubMed ID: 2558736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volume changes of the molten globule transitions of horse heart ferricytochrome c: a thermodynamic cycle.
    Foygel K; Spector S; Chatterjee S; Kahn PC
    Protein Sci; 1995 Jul; 4(7):1426-9. PubMed ID: 7670384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy.
    Hagarman A; Duitch L; Schweitzer-Stenner R
    Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat-induced conformational transition of cytochrome c observed by temperature gradient gel electrophoresis at acidic pH.
    Víglaský V; Antalík M; Bagel'ová J; Tomori Z; Podhradský D
    Electrophoresis; 2000 Mar; 21(5):850-8. PubMed ID: 10768769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic characterization of cytochrome c at low pH. Observation of the molten globule state and of the cold denaturation process.
    Kuroda Y; Kidokoro S; Wada A
    J Mol Biol; 1992 Feb; 223(4):1139-53. PubMed ID: 1311387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volume and compressibility changes accompanying thermally-induced native-to-unfolded and molten globule-to-unfolded transitions of cytochrome c: a high pressure study.
    Dubins DN; Filfil R; Macgregor RB; Chalikian TV
    Biochemistry; 2003 Jul; 42(29):8671-8. PubMed ID: 12873126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nucleotides on thermal stability of ferricytochrome C.
    Antalík M; Bágel'ová J
    Gen Physiol Biophys; 1995 Feb; 14(1):19-37. PubMed ID: 8529863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization of the pH-denatured states of ferricytochrome-c by synchrotron small angle X-ray scattering.
    Cinelli S; Spinozzi F; Itri R; Finet S; Carsughi F; Onori G; Mariani P
    Biophys J; 2001 Dec; 81(6):3522-33. PubMed ID: 11721013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin state and unfolding equilibria of ferricytochrome c in acidic solutions.
    Dyson HJ; Beattie JK
    J Biol Chem; 1982 Mar; 257(5):2267-73. PubMed ID: 6277891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of the alkaline transition of cytochrome c.
    Battistuzzi G; Borsari M; Loschi L; Martinelli A; Sola M
    Biochemistry; 1999 Jun; 38(25):7900-7. PubMed ID: 10387031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Microcalorimetric study of thermodynamic values of aqueous phase transition and eutectic melting in the binary and ternary systems Na-DNA--H20 and Na-DNA--H20--NaCl].
    Mrevlishvili GM; Dzhaparidze GSh; Sokhadze VM; Chanchalashvili ZI; Bilinska B
    Biofizika; 1978; 23(4):605-9. PubMed ID: 678564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chain-like conformation of heat-denatured ribonuclease A and cytochrome c as evidenced by solution X-ray scattering.
    Hagihara Y; Hoshino M; Hamada D; Kataoka M; Goto Y
    Fold Des; 1998; 3(3):195-201. PubMed ID: 9562549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for investigating the effect of temperature on the 695 nm band of insoluble cytochrome c.
    Moore TA; Greenwood C
    Biochem J; 1975 Jul; 149(1):169-77. PubMed ID: 172068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH and temperature-induced molten globule-like denatured states of equinatoxin II: a study by UV-melting, DSC, far- and near-UV CD spectroscopy, and ANS fluorescence.
    Poklar N; Lah J; Salobir M; Macek P; Vesnaver G
    Biochemistry; 1997 Nov; 36(47):14345-52. PubMed ID: 9398152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on cytochrome c-heparin interactions by differential scanning calorimetry.
    Bágel'ová J; Antalík M; Bona M
    Biochem J; 1994 Jan; 297 ( Pt 1)(Pt 1):99-101. PubMed ID: 8280115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-two-state thermal denaturation of ferricytochrome c at neutral and slightly acidic pH values.
    Varhač R; Sedláková D; Stupák M; Sedlák E
    Biophys Chem; 2015; 203-204():41-50. PubMed ID: 26042543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multidomain structure of a recombinant streptokinase. A differential scanning calorimetry study.
    Beldarraín A; López-Lacomba JL; Kutyshenko VP; Serrano R; Cortijo M
    J Protein Chem; 2001 Jan; 20(1):9-17. PubMed ID: 11330353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic and structural properties of the acid molten globule state of horse cytochrome C.
    Nakamura S; Seki Y; Katoh E; Kidokoro S
    Biochemistry; 2011 Apr; 50(15):3116-26. PubMed ID: 21388230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the conformational stability of the molten globule and native states of horse cytochrome c. Effects of acetylation, heat, urea and guanidine-hydrochloride.
    Hagihara Y; Tan Y; Goto Y
    J Mol Biol; 1994 Apr; 237(3):336-48. PubMed ID: 8145245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.