These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 25587625)
41. The mechanism of hydride transfer between NADH and 3-acetylpyridine adenine dinucleotide by the pyridine nucleotide transhydrogenase of Escherichia coli. Glavas NA; Bragg PD Biochim Biophys Acta; 1995 Oct; 1231(3):297-303. PubMed ID: 7578217 [TBL] [Abstract][Full Text] [Related]
42. Hymenolepis diminuta: mitochondrial transhydrogenase as an additional site for anaerobic phosphorylation. Mercer-Haines N; Fioravanti CF Exp Parasitol; 2008 May; 119(1):24-9. PubMed ID: 18262524 [TBL] [Abstract][Full Text] [Related]
43. Anomalous effect of uncouplers on respiratory chain-linked transhydrogenation in Escherichia coli membranes: evidence for a localized proton pathway? Chang DY; Hou C; Bragg PD Arch Biochem Biophys; 1992 Mar; 293(2):246-53. PubMed ID: 1311161 [TBL] [Abstract][Full Text] [Related]
44. [Characteristics of the interaction of adrenal lipoamide dehydrogenase with physiological and quinone electron acceptors]. Chenas NK; Butkus AA; Kanapenene IuIu; Kulis IuIu Ukr Biokhim Zh (1978); 1987; 59(2):44-9. PubMed ID: 3576723 [TBL] [Abstract][Full Text] [Related]
45. [Intermembrane electron transport in the dynamics of high-amplitude swelling of rat liver mitochondria]. Lemeshko VV; Shekh VE; Aleksenko TV Ukr Biokhim Zh (1978); 1995; 67(2):28-34. PubMed ID: 8592781 [TBL] [Abstract][Full Text] [Related]
47. Lipoamide dehydrogenase from Trypanosoma cruzi: some properties and cellular localization. Portela MP; Stopopani AO Biochem Int; 1991 May; 24(1):147-55. PubMed ID: 1768255 [TBL] [Abstract][Full Text] [Related]
48. Activity of the inner and outer membrane oxidative enzymes in brown adipose tissue mitochondria. Houstĕk J; Drahota Z Physiol Bohemoslov; 1975; 24(4):297-304. PubMed ID: 169530 [TBL] [Abstract][Full Text] [Related]
50. Sequence comparison between the flavoprotein subunit of the fumarate reductase (complex II) of the anaerobic parasitic nematode, Ascaris suum and the succinate dehydrogenase of the aerobic, free-living nematode, Caenorhabditis elegans. Kuramochi T; Hirawake H; Kojima S; Takamiya S; Furushima R; Aoki T; Komuniecki R; Kita K Mol Biochem Parasitol; 1994 Dec; 68(2):177-87. PubMed ID: 7739664 [TBL] [Abstract][Full Text] [Related]
51. Purification of lipoamide dehydrogenase from Ascaris muscle mitochondria and its relationship to NADH:NAD+ transhydrogenase activity. Komuniecki R; Saz HJ Arch Biochem Biophys; 1979 Aug; 196(1):239-47. PubMed ID: 507807 [No Abstract] [Full Text] [Related]
52. NADPH-to-NADH conversion by mitochondrial transhydrogenase is indispensable for sustaining anaerobic metabolism in Euglena gracilis. Nakazawa M; Takahashi M; Hayashi R; Matsubara Y; Kashiyama Y; Ueda M; Inui H; Sakamoto T FEBS Lett; 2021 Dec; 595(23):2922-2930. PubMed ID: 34738635 [TBL] [Abstract][Full Text] [Related]
53. Ascaris suum NADH-methemo(myo)globin reductase systems recovering differential functions of hemoglobin and myoglobin, adapting to environmental hypoxia. Takamiya S; Hashimoto M; Kazuno S; Kikkawa M; Yamakura F Parasitol Int; 2009 Sep; 58(3):278-84. PubMed ID: 19332145 [TBL] [Abstract][Full Text] [Related]
55. Mitochondrial NADH oxidase activity of Setaria cervi. Goyal N; Srivastava VM Vet Parasitol; 1990 Nov; 37(3-4):229-36. PubMed ID: 2267725 [TBL] [Abstract][Full Text] [Related]
56. Kinetic and spectroscopic studies of transhydrogenase activity and nucleotide site of lipoamide dehydrogenase. Templeton DM; Tsai CS Int J Biochem; 1985; 17(8):879-83. PubMed ID: 3840101 [TBL] [Abstract][Full Text] [Related]
57. A Hidden Transhydrogen Activity of a FMN-Bound Diaphorase under Anaerobic Conditions. Collins J; Zhang T; Huston S; Sun F; Zhang YH; Fu J PLoS One; 2016; 11(5):e0154865. PubMed ID: 27145082 [TBL] [Abstract][Full Text] [Related]
58. Bioinformatic identification of cytochrome b5 homologues from the parasitic nematode Ascaris suum and the free-living nematode Caenorhabditis elegans highlights the crucial role of A. suum adult-specific secretory cytochrome b₅ in parasitic adaptation. Takamiya S; Hashimoto M; Mita T; Yokota T; Nakajima Y; Yamakura F; Sugio S; Fujimura T; Ueno T; Yamasaki H Parasitol Int; 2016 Apr; 65(2):113-20. PubMed ID: 26571414 [TBL] [Abstract][Full Text] [Related]