These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests. Wiens RC; Maurice S; Robinson SH; Nelson AE; Cais P; Bernardi P; Newell RT; Clegg S; Sharma SK; Storms S; Deming J; Beckman D; Ollila AM; Gasnault O; Anderson RB; André Y; Michael Angel S; Arana G; Auden E; Beck P; Becker J; Benzerara K; Bernard S; Beyssac O; Borges L; Bousquet B; Boyd K; Caffrey M; Carlson J; Castro K; Celis J; Chide B; Clark K; Cloutis E; Cordoba EC; Cousin A; Dale M; Deflores L; Delapp D; Deleuze M; Dirmyer M; Donny C; Dromart G; George Duran M; Egan M; Ervin J; Fabre C; Fau A; Fischer W; Forni O; Fouchet T; Fresquez R; Frydenvang J; Gasway D; Gontijo I; Grotzinger J; Jacob X; Jacquinod S; Johnson JR; Klisiewicz RA; Lake J; Lanza N; Laserna J; Lasue J; Le Mouélic S; Legett C; Leveille R; Lewin E; Lopez-Reyes G; Lorenz R; Lorigny E; Love SP; Lucero B; Madariaga JM; Madsen M; Madsen S; Mangold N; Manrique JA; Martinez JP; Martinez-Frias J; McCabe KP; McConnochie TH; McGlown JM; McLennan SM; Melikechi N; Meslin PY; Michel JM; Mimoun D; Misra A; Montagnac G; Montmessin F; Mousset V; Murdoch N; Newsom H; Ott LA; Ousnamer ZR; Pares L; Parot Y; Pawluczyk R; Glen Peterson C; Pilleri P; Pinet P; Pont G; Poulet F; Provost C; Quertier B; Quinn H; Rapin W; Reess JM; Regan AH; Reyes-Newell AL; Romano PJ; Royer C; Rull F; Sandoval B; Sarrao JH; Sautter V; Schoppers MJ; Schröder S; Seitz D; Shepherd T; Sobron P; Dubois B; Sridhar V; Toplis MJ; Torre-Fdez I; Trettel IA; Underwood M; Valdez A; Valdez J; Venhaus D; Willis P Space Sci Rev; 2021; 217(1):4. PubMed ID: 33380752 [TBL] [Abstract][Full Text] [Related]
4. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars. Bazalgette Courrèges-Lacoste G; Ahlers B; Pérez FR Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1023-8. PubMed ID: 17466575 [TBL] [Abstract][Full Text] [Related]
5. New trends in telescopic remote Raman spectroscopic instrumentation. Sharma SK Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1008-22. PubMed ID: 17723317 [TBL] [Abstract][Full Text] [Related]
6. Comparison of two partial least squares-discriminant analysis algorithms for identifying geological samples with the ChemCam laser-induced breakdown spectroscopy instrument. Ollila AM; Lasue J; Newsom HE; Multari RA; Wiens RC; Clegg SM Appl Opt; 2012 Mar; 51(7):B130-42. PubMed ID: 22410911 [TBL] [Abstract][Full Text] [Related]
7. A Two Components Approach for Long Range Remote Raman and Laser-Induced Breakdown (LIBS) Spectroscopy Using Low Laser Pulse Energy. Misra AK; Acosta-Maeda TE; Porter JN; Berlanga G; Muchow D; Sharma SK; Chee B Appl Spectrosc; 2019 Mar; 73(3):320-328. PubMed ID: 30347998 [TBL] [Abstract][Full Text] [Related]
8. Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration. Arp ZA; Cremers DA; Wiens RC; Wayne DM; Sallé B; Maurice S Appl Spectrosc; 2004 Aug; 58(8):897-909. PubMed ID: 15324495 [TBL] [Abstract][Full Text] [Related]
9. Examining natural rock varnish and weathering rinds with laser-induced breakdown spectroscopy for application to ChemCam on Mars. Lanza NL; Clegg SM; Wiens RC; McInroy RE; Newsom HE; Deans MD Appl Opt; 2012 Mar; 51(7):B74-82. PubMed ID: 22410929 [TBL] [Abstract][Full Text] [Related]
11. Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances. Wiens RC; Sharma SK; Thompson J; Misra A; Lucey PG Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2324-34. PubMed ID: 16029853 [TBL] [Abstract][Full Text] [Related]
12. Time-resolved Raman spectroscopy for in situ planetary mineralogy. Blacksberg J; Rossman GR; Gleckler A Appl Opt; 2010 Sep; 49(26):4951-62. PubMed ID: 20830184 [TBL] [Abstract][Full Text] [Related]
13. Combined Spectroscopic Analysis of Terrestrial Analogs from a Simulated Astronaut Mission Using the Laser-Induced Breakdown Spectroscopy (LIBS) Raman Sensor: Implications for Mars. Lalla EA; Konstantinidis M; Lymer E; Gilmour CM; Freemantle J; Such P; Cote K; Groemer G; Martinez-Frias J; Cloutis EA; Daly MG Appl Spectrosc; 2021 Sep; 75(9):1093-1113. PubMed ID: 33988039 [TBL] [Abstract][Full Text] [Related]
14. [Joint Analyses of Na2SO4 Solution by Laser Induced Breakdown Spectroscopy and Raman Spectroscopy]. Guo JJ; Lu Y; Liu CH; Zheng RE Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):259-61. PubMed ID: 27228778 [TBL] [Abstract][Full Text] [Related]
15. Standoff Laser-Induced Breakdown Spectroscopy (LIBS) Using a Miniature Wide Field of View Spatial Heterodyne Spectrometer with Sub-Microsteradian Collection Optics. Barnett PD; Lamsal N; Angel SM Appl Spectrosc; 2017 Apr; 71(4):583-590. PubMed ID: 28103051 [TBL] [Abstract][Full Text] [Related]
16. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. Sharma SK; Misra AK; Lucey PG; Lentz RC Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):468-76. PubMed ID: 19084470 [TBL] [Abstract][Full Text] [Related]
17. Raman efficiencies of natural rocks and minerals: performance of a remote Raman system for planetary exploration at a distance of 10 meters. Stopar JD; Lucey PG; Sharma SK; Misra AK; Taylor GJ; Hubble HW Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2315-23. PubMed ID: 16029852 [TBL] [Abstract][Full Text] [Related]
18. Raman signal processing software for automated identification of mineral phases and biosignatures on Mars. Sobron P; Sobron F; Sanz A; Rull F Appl Spectrosc; 2008 Apr; 62(4):364-70. PubMed ID: 18416892 [TBL] [Abstract][Full Text] [Related]
19. Nonlinear mapping technique for data visualization and clustering assessment of LIBS data: application to ChemCam data. Lasue J; Wiens RC; Stepinski TF; Forni O; Clegg SM; Maurice S; Anal Bioanal Chem; 2011 Jul; 400(10):3247-60. PubMed ID: 21331488 [TBL] [Abstract][Full Text] [Related]