BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25587916)

  • 1. Processing of Materials for Regenerative Medicine Using Supercritical Fluid Technology.
    García-González CA; Concheiro A; Alvarez-Lorenzo C
    Bioconjug Chem; 2015 Jul; 26(7):1159-71. PubMed ID: 25587916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biocompatible tissue scaffold produced by supercritical fluid processing for cartilage tissue engineering.
    Kim SH; Jung Y; Kim SH
    Tissue Eng Part C Methods; 2013 Mar; 19(3):181-8. PubMed ID: 22834918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TGF-β3 encapsulated PLCL scaffold by a supercritical CO2-HFIP co-solvent system for cartilage tissue engineering.
    Kim SH; Kim SH; Jung Y
    J Control Release; 2015 May; 206():101-7. PubMed ID: 25804870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth factors delivery from hybrid PCL-starch scaffolds processed using supercritical fluid technology.
    Diaz-Gomez L; Concheiro A; Alvarez-Lorenzo C; García-González CA
    Carbohydr Polym; 2016 May; 142():282-92. PubMed ID: 26917401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercritical CO2 foamed polycaprolactone scaffolds for controlled delivery of 5-fluorouracil, nicotinamide and triflusal.
    Salerno A; Saurina J; Domingo C
    Int J Pharm; 2015 Dec; 496(2):654-63. PubMed ID: 26570986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun inorganic and polymer composite nanofibers for biomedical applications.
    Sridhar R; Sundarrajan S; Venugopal JR; Ravichandran R; Ramakrishna S
    J Biomater Sci Polym Ed; 2013; 24(4):365-85. PubMed ID: 23565681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic monitoring of foamed polymeric tissue scaffold fabrication.
    Mather ML; Crowe JA; Morgan SP; White LJ; Kalashnikov AN; Ivchenko VG; Howdle SM; Shakesheff KM
    J Mater Sci Mater Med; 2008 Sep; 19(9):3071-80. PubMed ID: 18392665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supercritical Fluid-Based Decellularization Technologies for Regenerative Medicine Applications.
    Kim BS; Kim JU; So KH; Hwang NS
    Macromol Biosci; 2021 Aug; 21(8):e2100160. PubMed ID: 34121330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering.
    Davies OR; Lewis AL; Whitaker MJ; Tai H; Shakesheff KM; Howdle SM
    Adv Drug Deliv Rev; 2008 Feb; 60(3):373-87. PubMed ID: 18069079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocomposites reinforced by fibers or tubes as scaffolds for tissue engineering or regenerative medicine.
    Li X; Yang Y; Fan Y; Feng Q; Cui FZ; Watari F
    J Biomed Mater Res A; 2014 May; 102(5):1580-94. PubMed ID: 23681610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene in Regenerative Medicine: Focus on Stem Cells and Neuronal Differentiation.
    Gardin C; Piattelli A; Zavan B
    Trends Biotechnol; 2016 Jun; 34(6):435-437. PubMed ID: 26879187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive composite materials for tissue engineering scaffolds.
    Boccaccini AR; Blaker JJ
    Expert Rev Med Devices; 2005 May; 2(3):303-17. PubMed ID: 16288594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomolecule delivery to engineer the cellular microenvironment for regenerative medicine.
    Bishop CJ; Kim J; Green JJ
    Ann Biomed Eng; 2014 Jul; 42(7):1557-72. PubMed ID: 24170072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug.
    El-Fiqi A; Kim JH; Kim HW
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1140-52. PubMed ID: 25531645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering.
    Santo VE; Gomes ME; Mano JF; Reis RL
    Nanomedicine (Lond); 2012 Jul; 7(7):1045-66. PubMed ID: 22846091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Electrospinning technology in tissue engineering scaffolds].
    Li H; Liu Y; He X; Ding Y; Yan H; Xie P; Yang W
    Sheng Wu Gong Cheng Xue Bao; 2012 Jan; 28(1):15-25. PubMed ID: 22667105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composite fibrous biomaterials for tissue engineering obtained using a supercritical CO2 antisolvent process.
    García-González CA; Vega-González A; López-Periago AM; Subra-Paternault P; Domingo C
    Acta Biomater; 2009 May; 5(4):1094-103. PubMed ID: 19041288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic and Responsive Growth Factor Delivery from Electrospun and Hydrogel Tissue Engineering Materials.
    Bruggeman KF; Williams RJ; Nisbet DR
    Adv Healthc Mater; 2018 Jan; 7(1):. PubMed ID: 29193871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced cell therapies with and without scaffolds.
    Demirbag B; Huri PY; Kose GT; Buyuksungur A; Hasirci V
    Biotechnol J; 2011 Dec; 6(12):1437-53. PubMed ID: 22162495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibrin as a scaffold for cardiac tissue engineering.
    Barsotti MC; Felice F; Balbarini A; Di Stefano R
    Biotechnol Appl Biochem; 2011; 58(5):301-10. PubMed ID: 21995533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.