These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 25588182)

  • 1. Capturing heterogeneous nucleation of nanoscale pits and subsequent crystal shrinkage during Ostwald ripening of a metal phosphate.
    Chung SY; Kim YM; Choi SY; Kim JG
    ACS Nano; 2015 Jan; 9(1):327-35. PubMed ID: 25588182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of Ostwald ripening by using surfactants with high surface modulus.
    Tcholakova S; Mitrinova Z; Golemanov K; Denkov ND; Vethamuthu M; Ananthapadmanabhan KP
    Langmuir; 2011 Dec; 27(24):14807-19. PubMed ID: 22059389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals.
    Shevchenko EV; Talapin DV; Schnablegger H; Kornowski A; Festin O; Svedlindh P; Haase M; Weller H
    J Am Chem Soc; 2003 Jul; 125(30):9090-101. PubMed ID: 15369366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics analysis of multiple site growth and coalescence effects on homogeneous and heterogeneous nucleations.
    Suh D; Yoon W; Shibahara M; Jung S
    J Chem Phys; 2008 Apr; 128(15):154523. PubMed ID: 18433251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Temperature Cycling on Ostwald Ripening.
    van Westen T; Groot RD
    Cryst Growth Des; 2018 Sep; 18(9):4952-4962. PubMed ID: 30210267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous nucleation of/on nanoparticles: a density functional study using the phase-field crystal model.
    Gránásy L; Podmaniczky F; Tóth GI; Tegze G; Pusztai T
    Chem Soc Rev; 2014 Apr; 43(7):2159-73. PubMed ID: 24399153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical liquid-liquid-solid (ec-LLS) crystal growth: a low-temperature strategy for covalent semiconductor crystal growth.
    Fahrenkrug E; Maldonado S
    Acc Chem Res; 2015 Jul; 48(7):1881-90. PubMed ID: 26132141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of oil type on nanoemulsion formation and Ostwald ripening stability.
    Wooster TJ; Golding M; Sanguansri P
    Langmuir; 2008 Nov; 24(22):12758-65. PubMed ID: 18850732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ostwald ripening for designing time-dependent crystal hydrogels.
    Liu Q; Fang Y; Xiong X; Xu W; Cui J
    Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202320095. PubMed ID: 38419359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design principles for broad-spectrum protein-crystal nucleants with nanoscale pits.
    van Meel JA; Sear RP; Frenkel D
    Phys Rev Lett; 2010 Nov; 105(20):205501. PubMed ID: 21231245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Population Balance Model for Crystal Size Distributions: Reversible, Size-Dependent Growth and Dissolution.
    McCoy BJ
    J Colloid Interface Sci; 2001 Aug; 240(1):139-149. PubMed ID: 11446796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous nucleation of three-dimensional protein nanocrystals.
    Georgieva DG; Kuil ME; Oosterkamp TH; Zandbergen HW; Abrahams JP
    Acta Crystallogr D Biol Crystallogr; 2007 May; 63(Pt 5):564-70. PubMed ID: 17452781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time observation of crystal evaporation in a metal phosphate at high temperature.
    Chung SY; Kim YM; Choi SY; Kim JG
    J Am Chem Soc; 2013 May; 135(21):7811-4. PubMed ID: 23688139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature effects for isothermal polymer crystallization kinetics.
    Yang J; McCoy BJ; Madras G
    J Chem Phys; 2005 Jun; 122(24):244905. PubMed ID: 16035814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process-Specific Effects of Sulfate on CaCO
    Zhu Y; Gao Z; Lee B; Jun YS
    Environ Sci Technol; 2022 Jun; 56(12):9063-9074. PubMed ID: 35617118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibiting Ostwald Ripening by Scaffolding Droplets.
    Zhang H; Chen S; Zhang B; Zhang X
    Langmuir; 2020 Nov; 36(45):13682-13688. PubMed ID: 33143409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multistep nucleation and growth mechanisms of organic crystals from amorphous solid states.
    Chen H; Li M; Lu Z; Wang X; Yang J; Wang Z; Zhang F; Gu C; Zhang W; Sun Y; Sun J; Zhu W; Guo X
    Nat Commun; 2019 Aug; 10(1):3872. PubMed ID: 31455804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleation and Ostwald Growth of Particles in Fe-O-Al-Ca Melt.
    Wang L; Li J; Yang S; Chen C; Jin H; Li X
    Sci Rep; 2018 Jan; 8(1):1135. PubMed ID: 29348615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress of nanocrystalline growth kinetics based on oriented attachment.
    Zhang J; Huang F; Lin Z
    Nanoscale; 2010 Jan; 2(1):18-34. PubMed ID: 20648361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.