These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25588182)

  • 21. Ostwald ripening, chiral crystallization, and the common-ancestor effect.
    Cartwright JH; Piro O; Tuval I
    Phys Rev Lett; 2007 Apr; 98(16):165501. PubMed ID: 17501427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleation and aggregative growth process of platinum nanoparticles studied by in situ quick XAFS spectroscopy.
    Harada M; Kamigaito Y
    Langmuir; 2012 Feb; 28(5):2415-28. PubMed ID: 22200585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth of Supported Gold Nanoparticles in Aqueous Phase Studied by in Situ Transmission Electron Microscopy.
    Meijerink MJ; de Jong KP; Zečević J
    J Phys Chem C Nanomater Interfaces; 2020 Jan; 124(3):2202-2212. PubMed ID: 32010421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions.
    Ouyang R; Liu JX; Li WX
    J Am Chem Soc; 2013 Feb; 135(5):1760-71. PubMed ID: 23272702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Secondary nucleation and growth of ZnO.
    Sounart TL; Liu J; Voigt JA; Huo M; Spoerke ED; McKenzie B
    J Am Chem Soc; 2007 Dec; 129(51):15786-93. PubMed ID: 18044887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From nucleation and coarsening to coalescence in metastable liquids.
    Alexandrov DV; Alexandrova IV
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190247. PubMed ID: 32279640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environmentally abundant anions influence the nucleation, growth, Ostwald ripening, and aggregation of hydrous Fe(III) oxides.
    Hu Y; Lee B; Bell C; Jun YS
    Langmuir; 2012 May; 28(20):7737-46. PubMed ID: 22568400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of silver particle formation during photoreduction using in situ time-resolved SAXS analysis.
    Harada M; Katagiri E
    Langmuir; 2010 Dec; 26(23):17896-905. PubMed ID: 21047110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Repair of impurity-poisoned protein crystal surfaces.
    Plomp M; McPherson A; Malkin AJ
    Proteins; 2003 Feb; 50(3):486-95. PubMed ID: 12557190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct observation of single Ostwald ripening processes by molecular dynamics simulation.
    Kraska T
    J Phys Chem B; 2008 Oct; 112(39):12408-13. PubMed ID: 18783194
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Roles of nucleation, denucleation, coarsening, and aggregation kinetics in nanoparticle preparations and neurological disease.
    Skrdla PJ
    Langmuir; 2012 Mar; 28(10):4842-57. PubMed ID: 22324463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distribution kinetics of Ostwald ripening at large volume fraction and with coalescence.
    Madras G; McCoy BJ
    J Colloid Interface Sci; 2003 May; 261(2):423-33. PubMed ID: 16256552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intermittent dynamics of bubble dissolution due to interfacial growth of fat crystals.
    Liascukiene I; Amselem G; Landoulsi J; Gunes DZ; Baroud CN
    Soft Matter; 2021 Nov; 17(44):10042-10052. PubMed ID: 34709287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlling the mechanism of phase transformation of colloidal In2O3 nanocrystals.
    Hutfluss LN; Radovanovic PV
    J Am Chem Soc; 2015 Jan; 137(3):1101-8. PubMed ID: 25539013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Mg Treatment on the Nucleation and Ostwald Growth of Inclusions in Fe-O-Al-Mg Melt.
    Li Y; Wang L; Chen C; Li J; Li X
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32731578
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AFM observations of phase transitions in molecularly thin films of a three-ring bent-core compound.
    Tang Y; Wang Y; Wang X; Xun S; Mei C; Wang L; Yan D
    J Phys Chem B; 2005 May; 109(18):8813-9. PubMed ID: 16852047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Size, Coverage, and Dispersity on the Potential-Controlled Ostwald Ripening of Metal Nanoparticles.
    Pattadar DK; Zamborini FP
    Langmuir; 2019 Dec; 35(50):16416-16426. PubMed ID: 31647240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal formation and growth during the hydrothermal synthesis of beta-Ni(OH)2 in one-dimensional nano space.
    Orikasa H; Karoji J; Matsui K; Kyotani T
    Dalton Trans; 2007 Sep; (34):3757-62. PubMed ID: 17712441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of monodisperse spherical nanocrystals.
    Park J; Joo J; Kwon SG; Jang Y; Hyeon T
    Angew Chem Int Ed Engl; 2007; 46(25):4630-60. PubMed ID: 17525914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spinodal for the solution-to-crystal phase transformation.
    Filobelo LF; Galkin O; Vekilov PG
    J Chem Phys; 2005 Jul; 123(1):014904. PubMed ID: 16035866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.