BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25588215)

  • 1. Acetic acid can catalyze succinimide formation from aspartic acid residues by a concerted bond reorganization mechanism: a computational study.
    Takahashi O; Kirikoshi R; Manabe N
    Int J Mol Sci; 2015 Jan; 16(1):1613-26. PubMed ID: 25588215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetic acid-catalyzed formation of N-phenylphthalimide from phthalanilic acid: a computational study of the mechanism.
    Takahashi O; Kirikoshi R; Manabe N
    Int J Mol Sci; 2015 May; 16(6):12174-84. PubMed ID: 26030675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of intramolecular and intermolecular hydrogen bonding in a three-water-assisted mechanism of succinimide formation from aspartic acid residues.
    Takahashi O; Kirikoshi R; Manabe N
    Molecules; 2014 Aug; 19(8):11440-52. PubMed ID: 25093984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate-Catalyzed Succinimide Formation from Asp Residues: A Computational Study of the Mechanism.
    Kirikoshi R; Manabe N; Takahashi O
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29495268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational studies on nonenzymatic succinimide-formation mechanisms of the aspartic acid residues catalyzed by two water molecules.
    Nakayoshi T; Kato K; Fukuyoshi S; Takahashi H; Takahashi O; Kurimoto E; Oda A
    Biochim Biophys Acta Proteins Proteom; 2020 Sep; 1868(9):140459. PubMed ID: 32474105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the activation energy barrier for succinimide formation from α- and β-aspartic acid residues obtained from density functional theory calculations.
    Nakayoshi T; Kato K; Fukuyoshi S; Takahashi O; Kurimoto E; Oda A
    Biochim Biophys Acta Proteins Proteom; 2018 Jul; 1866(7):759-766. PubMed ID: 29305913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Computational Study of the Mechanism of Succinimide Formation in the Asn-His Sequence: Intramolecular Catalysis by the His Side Chain.
    Takahashi O; Manabe N; Kirikoshi R
    Molecules; 2016 Mar; 21(3):327. PubMed ID: 27005609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Racemization of the Succinimide Intermediate Formed in Proteins and Peptides: A Computational Study of the Mechanism Catalyzed by Dihydrogen Phosphate Ion.
    Takahashi O; Kirikoshi R; Manabe N
    Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27735868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deamidation of asparagine residues: direct hydrolysis versus succinimide-mediated deamidation mechanisms.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2009 Feb; 113(6):1111-20. PubMed ID: 19152321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycolic acid-catalyzed deamidation of asparagine residues in degrading PLGA matrices: a computational study.
    Manabe N; Kirikoshi R; Takahashi O
    Int J Mol Sci; 2015 Mar; 16(4):7261-72. PubMed ID: 25837471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Mechanisms of Succinimide Formation from Aspartic Acid Residues Catalyzed by Two Water Molecules in the Aqueous Phase.
    Nakayoshi T; Kato K; Fukuyoshi S; Takahashi O; Kurimoto E; Oda A
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33419172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neighboring side chain effects on asparaginyl and aspartyl degradation: an ab initio study of the relationship between peptide conformation and backbone NH acidity.
    Radkiewicz JL; Zipse H; Clarke S; Houk KN
    J Am Chem Soc; 2001 Apr; 123(15):3499-506. PubMed ID: 11472122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the enolization of succinimide derivatives, a key step of racemization of aspartic acid residues: importance of a two-H2O mechanism.
    Takahashi O; Kobayashi K; Oda A
    Chem Biodivers; 2010 Jun; 7(6):1349-56. PubMed ID: 20564551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modeling of the enolization in a direct mechanism of racemization of the aspartic acid residue.
    Takahashi O; Kobayashi K; Oda A
    Chem Biodivers; 2010 Jun; 7(6):1630-3. PubMed ID: 20564675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate-Catalyzed Succinimide Formation from an NGR-Containing Cyclic Peptide: A Novel Mechanism for Deammoniation of the Tetrahedral Intermediate.
    Kirikoshi R; Manabe N; Takahashi O
    Molecules; 2018 Aug; 23(9):. PubMed ID: 30200364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins.
    Clarke S
    Int J Pept Protein Res; 1987 Dec; 30(6):808-21. PubMed ID: 3440704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2008 Sep; 112(37):8752-61. PubMed ID: 18714962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aspartic acid side chain effect-experimental and theoretical insight.
    Rozman M
    J Am Soc Mass Spectrom; 2007 Jan; 18(1):121-7. PubMed ID: 17049877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural investigation of a phosphorylation-catalyzed, isoaspartate-free, protein succinimide: crystallographic structure of post-succinimide His15Asp histidine-containing protein.
    Napper S; Prasad L; Delbaere LT
    Biochemistry; 2008 Sep; 47(36):9486-96. PubMed ID: 18702519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Succinimide Formation from an NGR-Containing Cyclic Peptide: Computational Evidence for Catalytic Roles of Phosphate Buffer and the Arginine Side Chain.
    Kirikoshi R; Manabe N; Takahashi O
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28212316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.