These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25588759)

  • 1. Concluding remarks: summary of some of our recent studies in the field of conjugating plasmonic gold nanoparticles to single cancer cells and their molecular and cellular dynamics.
    El-Sayed MA
    Faraday Discuss; 2014; 175():305-8. PubMed ID: 25588759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observing real-time molecular event dynamics of apoptosis in living cancer cells using nuclear-targeted plasmonically enhanced Raman nanoprobes.
    Kang B; Austin LA; El-Sayed MA
    ACS Nano; 2014 May; 8(5):4883-92. PubMed ID: 24708404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures.
    Xie W; Walkenfort B; Schlücker S
    J Am Chem Soc; 2013 Feb; 135(5):1657-60. PubMed ID: 23186150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanoparticles explore cells: cellular uptake and their use as intracellular probes.
    Huefner A; Septiadi D; Wilts BD; Patel II; Kuan WL; Fragniere A; Barker RA; Mahajan S
    Methods; 2014 Jul; 68(2):354-63. PubMed ID: 24583117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum sized gold nanoclusters with atomic precision.
    Qian H; Zhu M; Wu Z; Jin R
    Acc Chem Res; 2012 Sep; 45(9):1470-9. PubMed ID: 22720781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting the nanoparticle plasmon effect: observing drug delivery dynamics in single cells via Raman/fluorescence imaging spectroscopy.
    Kang B; Afifi MM; Austin LA; El-Sayed MA
    ACS Nano; 2013 Aug; 7(8):7420-7. PubMed ID: 23909658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of hydration on plasmonic coupling of bioconjugated gold nanoparticles immobilized on a gold film probed by surface-enhanced Raman spectroscopy.
    Driskell JD; Larrick CG; Trunell C
    Langmuir; 2014 Jun; 30(22):6309-13. PubMed ID: 24854627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some more observations on the unique electrochemical properties of electrode-monolayer-nanoparticle constructs.
    Dyne J; Lin YS; Lai LM; Ginges JZ; Luais E; Peterson JR; Goon IY; Amal R; Gooding JJ
    Chemphyschem; 2010 Sep; 11(13):2807-13. PubMed ID: 20669213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-enhanced Raman spectroscopy-based, homogeneous, multiplexed immunoassay with antibody-fragments-decorated gold nanoparticles.
    Wang Y; Tang LJ; Jiang JH
    Anal Chem; 2013 Oct; 85(19):9213-20. PubMed ID: 23998432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-triggered SERS via modulated plasmonic coupling in individual bimetallic nanocobs.
    Gupta MK; Chang S; Singamaneni S; Drummy LF; Gunawidjaja R; Naik RR; Tsukruk VV
    Small; 2011 May; 7(9):1192-8. PubMed ID: 21491586
    [No Abstract]   [Full Text] [Related]  

  • 11. Development of polymer-encapsulated metal nanoparticles as surface-enhanced Raman scattering probes.
    Yang M; Chen T; Lau WS; Wang Y; Tang Q; Yang Y; Chen H
    Small; 2009 Feb; 5(2):198-202. PubMed ID: 19040220
    [No Abstract]   [Full Text] [Related]  

  • 12. Aggregation-resistant water-soluble gold nanoparticles.
    Rouhana LL; Jaber JA; Schlenoff JB
    Langmuir; 2007 Dec; 23(26):12799-801. PubMed ID: 18004894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles.
    Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ
    Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of linear aliphatic α,ω-dithiols on plasmonic metal nanoparticles: a structural study based on surface-enhanced Raman spectra.
    Kubackova J; Izquierdo-Lorenzo I; Jancura D; Miskovsky P; Sanchez-Cortes S
    Phys Chem Chem Phys; 2014 Jun; 16(23):11461-70. PubMed ID: 24802070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic heating assisted deposition of bare Au nanoparticles on titania nanoshells.
    Alessandri I
    J Colloid Interface Sci; 2010 Nov; 351(2):576-9. PubMed ID: 20800851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free-standing one-dimensional plasmonic nanostructures.
    Jiang L; Sun Y; Huo F; Zhang H; Qin L; Li S; Chen X
    Nanoscale; 2012 Jan; 4(1):66-75. PubMed ID: 22113325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles.
    Crow MJ; Seekell K; Ostrander JH; Wax A
    ACS Nano; 2011 Nov; 5(11):8532-40. PubMed ID: 21999459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Faraday Discussions meeting Catalysis for Fuels.
    Fischer N; Kondrat SA; Shozi M
    Chem Commun (Camb); 2017 May; 53(36):4880-4887. PubMed ID: 28435946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic preconcentration of gold nanoparticles for surface-enhanced Raman scattering in a microfluidic system.
    Kim KB; Han JH; Choi H; Kim HC; Chung TD
    Small; 2012 Feb; 8(3):378-83. PubMed ID: 22174101
    [No Abstract]   [Full Text] [Related]  

  • 20. Cellular uptake and nanoscale localization of gold nanoparticles in cancer using label-free confocal Raman microscopy.
    Shah NB; Dong J; Bischof JC
    Mol Pharm; 2011 Feb; 8(1):176-84. PubMed ID: 21053973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.