BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25588802)

  • 1. Identification and quantification of macrophage presence in coronary atherosclerotic plaques by optical coherence tomography.
    Di Vito L; Agozzino M; Marco V; Ricciardi A; Concardi M; Romagnoli E; Gatto L; Calogero G; Tavazzi L; Arbustini E; Prati F
    Eur Heart J Cardiovasc Imaging; 2015 Jul; 16(7):807-13. PubMed ID: 25588802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intravascular optical coherence tomography method for automated detection of macrophage infiltration within atherosclerotic coronary plaques.
    Rico-Jimenez JJ; Campos-Delgado DU; Buja LM; Vela D; Jo JA
    Atherosclerosis; 2019 Nov; 290():94-102. PubMed ID: 31604172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atherosclerotic plaque characterization by CT angiography for identification of high-risk coronary artery lesions: a comparison to optical coherence tomography.
    Nakazato R; Otake H; Konishi A; Iwasaki M; Koo BK; Fukuya H; Shinke T; Hirata K; Leipsic J; Berman DS; Min JK
    Eur Heart J Cardiovasc Imaging; 2015 Apr; 16(4):373-9. PubMed ID: 25246503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo detection of lipid-rich plaque by using a 40-MHz intravascular ultrasound: a comparison with optical coherence tomography findings.
    Takahashi K; Kakuta T; Yonetsu T; Lee T; Koura K; Hishikari K; Murai T; Iesaka Y; Isobe M
    Cardiovasc Interv Ther; 2013 Oct; 28(4):333-43. PubMed ID: 23649535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Macrophage content detection in an experimental rabbit model of atherosclerotic plaque by optical coherence tomography].
    Yu X; Zhou D; Hao D; Wei L; Yu B
    Zhonghua Xin Xue Guan Bing Za Zhi; 2015 Feb; 43(2):146-52. PubMed ID: 25907487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated lipid-rich plaque detection with short wavelength infra-red OCT system.
    Shimokado A; Kubo T; Nishiguchi T; Katayama Y; Taruya A; Ohta S; Kashiwagi M; Shimamura K; Kuroi A; Kameyama T; Shiono Y; Yamano T; Matsuo Y; Kitabata H; Ino Y; Hozumi T; Tanaka A; Akasaka T
    Eur Heart J Cardiovasc Imaging; 2018 Oct; 19(10):1174-1178. PubMed ID: 29186546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Ex vivo assessment of coronary lesions by optical coherence tomography and intravascular ultrasound in comparison with histology results].
    Guo J; Sun L; Chen YD; Tian F; Liu HB; Chen L; Sun ZJ; Ren YH; Jin QH; Liu CF; Han BS; Gai LY; Yang TS
    Zhonghua Xin Xue Guan Bing Za Zhi; 2012 Apr; 40(4):302-6. PubMed ID: 22801308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex Vivo Assessment of Coronary Atherosclerotic Plaque by Grating-Based Phase-Contrast Computed Tomography: Correlation With Optical Coherence Tomography.
    Habbel C; Hetterich H; Willner M; Herzen J; Steigerwald K; Auweter S; Schüller U; Hausleiter J; Massberg S; Reiser M; Pfeiffer F; Saam T; Bamberg F
    Invest Radiol; 2017 Apr; 52(4):223-231. PubMed ID: 28079701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Plaque Neovascularization by Optical Coherence Tomography: Ex Vivo Feasibility Study and In Vivo Observation in Patients With Angina Pectoris.
    Kume T; Okura H; Yamada R; Koyama T; Fukuhara K; Kawamura A; Imai K; Neishi Y; Uemura S
    J Invasive Cardiol; 2016 Jan; 28(1):17-22. PubMed ID: 26716590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-aided image analysis algorithm to enhance in vivo diagnosis of plaque erosion by intravascular optical coherence tomography.
    Wang Z; Jia H; Tian J; Soeda T; Vergallo R; Minami Y; Lee H; Aguirre A; Fujimoto JG; Jang IK
    Circ Cardiovasc Imaging; 2014 Sep; 7(5):805-10. PubMed ID: 25034595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical and pathological characteristics of homogeneous and nonhomogeneous tissue of in-stent restenosis visualized by optical coherence tomography.
    Itoh T; Fusazaki T; Kimura T; Oikawa H; Sasou S; Ishikawa Y; Goto I; Komuro K; Nakajima S; Koeda Y; Kaneko K; Nishiyama O; Nakamura M; Morino Y
    Coron Artery Dis; 2015 May; 26(3):201-11. PubMed ID: 25714072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plaque characteristics of thin-cap fibroatheroma evaluated by OCT and IVUS.
    Miyamoto Y; Okura H; Kume T; Kawamoto T; Neishi Y; Hayashida A; Yamada R; Imai K; Saito K; Yoshida K
    JACC Cardiovasc Imaging; 2011 Jun; 4(6):638-46. PubMed ID: 21679899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between a systemic inflammatory marker, plaque inflammation, and plaque characteristics determined by intravascular optical coherence tomography.
    Raffel OC; Tearney GJ; Gauthier DD; Halpern EF; Bouma BE; Jang IK
    Arterioscler Thromb Vasc Biol; 2007 Aug; 27(8):1820-7. PubMed ID: 17541021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo evaluation of fibrous cap thickness by optical coherence tomography for positive remodeling and low-attenuation plaques assessed by computed tomography angiography.
    Sato A; Hoshi T; Kakefuda Y; Hiraya D; Watabe H; Kawabe M; Akiyama D; Koike A; Aonuma K
    Int J Cardiol; 2015 Mar; 182():419-25. PubMed ID: 25596470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intravascular ultrasound area strain imaging used to characterize tissue components and assess vulnerability of atherosclerotic plaques in a rabbit model.
    Hu XB; Zhang PF; Su HJ; Yi X; Chen L; Rong YY; Zhang K; Li X; Wang L; Sun CL; Cai XJ; Li L; Song JT; Dai XM; Sui XD; Zhang Y; Zhang M
    Ultrasound Med Biol; 2011 Oct; 37(10):1579-87. PubMed ID: 21856069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iMap-Intravascular Ultrasound Radiofrequency Signal Analysis Reflects Plaque Components of Optical Coherence Tomography-Derived Thin-Cap Fibroatheroma.
    Koga S; Ikeda S; Miura M; Yoshida T; Nakata T; Koide Y; Kawano H; Maemura K
    Circ J; 2015; 79(10):2231-7. PubMed ID: 26289833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of near-infrared spectroscopy and optical coherence tomography for detection of lipid.
    Yonetsu T; Suh W; Abtahian F; Kato K; Vergallo R; Kim SJ; Jia H; McNulty I; Lee H; Jang IK
    Catheter Cardiovasc Interv; 2014 Nov; 84(5):710-7. PubMed ID: 23785015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo optical coherence tomography imaging and histopathology of healed coronary plaques.
    Shimokado A; Matsuo Y; Kubo T; Nishiguchi T; Taruya A; Teraguchi I; Shiono Y; Orii M; Tanimoto T; Yamano T; Ino Y; Hozumi T; Tanaka A; Muragaki Y; Akasaka T
    Atherosclerosis; 2018 Aug; 275():35-42. PubMed ID: 29859471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo tissue characterization of human atherosclerotic plaques by optical coherence tomography: A directional coronary atherectomy study with histopathologic confirmation.
    Habara M; Otsuka F; Tsuchikane E; Terashima M; Nasu K; Kinoshita Y; Murata A; Suzuki Y; Kawase Y; Okubo M; Matsuo H; Matsubara T; Yasuda S; Ishibashi-Ueda H; Suzuki T
    Int J Cardiol; 2018 Oct; 268():1-10. PubMed ID: 29804698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence-emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels.
    Lee S; Lee MW; Cho HS; Song JW; Nam HS; Oh DJ; Park K; Oh WY; Yoo H; Kim JW
    Circ Cardiovasc Interv; 2014 Aug; 7(4):560-9. PubMed ID: 25074255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.