These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25588802)

  • 21. Anatomically correct three-dimensional coronary artery reconstruction using frequency domain optical coherence tomographic and angiographic data: head-to-head comparison with intravascular ultrasound for endothelial shear stress assessment in humans.
    Papafaklis MI; Bourantas CV; Yonetsu T; Vergallo R; Kotsia A; Nakatani S; Lakkas LS; Athanasiou LS; Naka KK; Fotiadis DI; Feldman CL; Stone PH; Serruys PW; Jang IK; Michalis LK
    EuroIntervention; 2015 Aug; 11(4):407-15. PubMed ID: 24974809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of diagnostic accuracy between multidetector computed tomography and virtual histology intravascular ultrasound for detecting optical coherence tomography-derived fibroatheroma.
    Kashiwagi M; Tanaka A; Kitabata H; Ozaki Y; Komukai K; Tanimoto T; Ino Y; Kubo T; Hirata K; Imanishi T; Akasaka T
    Cardiovasc Interv Ther; 2014 Apr; 29(2):102-8. PubMed ID: 24150708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical coherence tomography assessment of the spatial distribution of culprit ruptured plaques and thin-cap fibroatheromas in acute coronary syndrome.
    Toutouzas K; Karanasos A; Riga M; Tsiamis E; Synetos A; Michelongona A; Papanikolaou A; Triantafyllou G; Tsioufis C; Stefanadis C
    EuroIntervention; 2012 Aug; 8(4):477-85. PubMed ID: 22917732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. OCT for the identification of vulnerable plaque in acute coronary syndrome.
    Sinclair H; Bourantas C; Bagnall A; Mintz GS; Kunadian V
    JACC Cardiovasc Imaging; 2015 Feb; 8(2):198-209. PubMed ID: 25677892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accuracy of intravascular ultrasound and optical coherence tomography in identifying functionally significant coronary stenosis according to vessel diameter: A meta-analysis of 2,581 patients and 2,807 lesions.
    D'Ascenzo F; Barbero U; Cerrato E; Lipinski MJ; Omedè P; Montefusco A; Taha S; Naganuma T; Reith S; Voros S; Latib A; Gonzalo N; Quadri G; Colombo A; Biondi-Zoccai G; Escaned J; Moretti C; Gaita F
    Am Heart J; 2015 May; 169(5):663-73. PubMed ID: 25965714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of atorvastatin therapy on fibrous cap thickness in coronary atherosclerotic plaque as assessed by optical coherence tomography: the EASY-FIT study.
    Komukai K; Kubo T; Kitabata H; Matsuo Y; Ozaki Y; Takarada S; Okumoto Y; Shiono Y; Orii M; Shimamura K; Ueno S; Yamano T; Tanimoto T; Ino Y; Yamaguchi T; Kumiko H; Tanaka A; Imanishi T; Akagi H; Akasaka T
    J Am Coll Cardiol; 2014 Dec; 64(21):2207-17. PubMed ID: 25456755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of plaque structure and composition using OCT combined with two-photon luminescence (TPL) imaging.
    Wang T; McElroy A; Halaney D; Vela D; Fung E; Hossain S; Phipps J; Wang B; Yin B; Feldman MD; Milner TE
    Lasers Surg Med; 2015 Aug; 47(6):485-94. PubMed ID: 26018531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo CT detection of lipid-rich coronary artery atherosclerotic plaques using quantitative histogram analysis: a head to head comparison with IVUS.
    Marwan M; Taher MA; El Meniawy K; Awadallah H; Pflederer T; Schuhbäck A; Ropers D; Daniel WG; Achenbach S
    Atherosclerosis; 2011 Mar; 215(1):110-5. PubMed ID: 21227419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography.
    Maurovich-Horvat P; Schlett CL; Alkadhi H; Nakano M; Otsuka F; Stolzmann P; Scheffel H; Ferencik M; Kriegel MF; Seifarth H; Virmani R; Hoffmann U
    JACC Cardiovasc Imaging; 2012 Dec; 5(12):1243-52. PubMed ID: 23236975
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship between optical coherence tomography derived intraluminal and intramural criteria and haemodynamic relevance as determined by fractional flow reserve in intermediate coronary stenoses of patients with type 2 diabetes.
    Reith S; Battermann S; Jaskolka A; Lehmacher W; Hoffmann R; Marx N; Burgmaier M
    Heart; 2013 May; 99(10):700-7. PubMed ID: 23543283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Feasibility of optical coronary tomography in quantitative measurement of coronary arteries with lipid-rich plaque.
    Kubo T; Yamano T; Liu Y; Ino Y; Shiono Y; Orii M; Taruya A; Nishiguchi T; Shimokado A; Teraguchi I; Tanimoto T; Kitabata H; Yamaguchi T; Hirata K; Tanaka A; Akasaka T
    Circ J; 2015; 79(3):600-6. PubMed ID: 25492038
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical Coherence Tomography Predictors for a Favorable Vascular Response to Statin Therapy.
    Nakajima A; Minami Y; Araki M; Kurihara O; Soeda T; Yonetsu T; Wang Z; McNulty I; Lee H; Nakamura S; Jang IK
    J Am Heart Assoc; 2021 Jan; 10(1):e018205. PubMed ID: 33342228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-localization of plaque macrophages with calcification is associated with a more vulnerable plaque phenotype and a greater calcification burden in coronary target segments as determined by OCT.
    Burgmaier M; Milzi A; Dettori R; Burgmaier K; Marx N; Reith S
    PLoS One; 2018; 13(10):e0205984. PubMed ID: 30356326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated detection of superficial macrophages in atherosclerotic plaques using autofluorescence lifetime imaging.
    Rico-Jimenez JJ; Serafino MJ; Shrestha S; Chen X; Kim W; Adame J; Buja LM; Vela D; Applegate BE; Jo JA
    Atherosclerosis; 2019 Jun; 285():120-127. PubMed ID: 31051415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical coherence tomography attenuation imaging for lipid core detection: an ex-vivo validation study.
    Gnanadesigan M; Hussain AS; White S; Scoltock S; Baumbach A; van der Steen AF; Regar E; Johnson TW; van Soest G
    Int J Cardiovasc Imaging; 2017 Jan; 33(1):5-11. PubMed ID: 27620900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predictors for target lesion microcalcifications in patients with stable coronary artery disease: an optical coherence tomography study.
    Reith S; Milzi A; Dettori R; Marx N; Burgmaier M
    Clin Res Cardiol; 2018 Sep; 107(9):763-771. PubMed ID: 29654434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined NIRS and IVUS imaging detects vulnerable plaque using a single catheter system: a head-to-head comparison with OCT.
    Roleder T; Kovacic JC; Ali Z; Sharma R; Cristea E; Moreno P; Sharma SK; Narula J; Kini AS
    EuroIntervention; 2014 Jul; 10(3):303-11. PubMed ID: 24769522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of cholesterol crystals by optical coherence tomography.
    Jinnouchi H; Sato Y; Torii S; Sakamoto A; Cornelissen A; Bhoite RR; Kuntz S; Guo L; Paek KH; Fernandez R; Kolodgie FD; Virmani R; Finn AV
    EuroIntervention; 2020 Aug; 16(5):395-403. PubMed ID: 32310132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison by optical coherence tomography of the frequency of lipid coronary plaques in current smokers, former smokers, and nonsmokers.
    Abtahian F; Yonetsu T; Kato K; Jia H; Vergallo R; Tian J; Hu S; McNulty I; Lee H; Yu B; Jang IK
    Am J Cardiol; 2014 Sep; 114(5):674-80. PubMed ID: 25048344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elevated levels of systemic pentraxin 3 are associated with thin-cap fibroatheroma in coronary culprit lesions: assessment by optical coherence tomography and intravascular ultrasound.
    Koga S; Ikeda S; Yoshida T; Nakata T; Takeno M; Masuda N; Koide Y; Kawano H; Maemura K
    JACC Cardiovasc Interv; 2013 Sep; 6(9):945-54. PubMed ID: 23954061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.