These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25588812)

  • 1. Glial β-oxidation regulates Drosophila energy metabolism.
    Schulz JG; Laranjeira A; Van Huffel L; Gärtner A; Vilain S; Bastianen J; Van Veldhoven PP; Dotti CG
    Sci Rep; 2015 Jan; 5():7805. PubMed ID: 25588812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transportin-serine/arginine-rich (Tnpo-SR) proteins are necessary for proper lipid storage in the Drosophila fat body.
    Nagle C; Bhogal JK; Nagengast AA; DiAngelo JR
    Biochem Biophys Res Commun; 2022 Mar; 596():1-5. PubMed ID: 35104661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specialized Cortex Glial Cells Accumulate Lipid Droplets in Drosophila melanogaster.
    Kis V; Barti B; Lippai M; Sass M
    PLoS One; 2015; 10(7):e0131250. PubMed ID: 26148013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The SR proteins SF2 and RBP1 regulate triglyceride storage in the fat body of Drosophila.
    Bennick RA; Nagengast AA; DiAngelo JR
    Biochem Biophys Res Commun; 2019 Aug; 516(3):928-933. PubMed ID: 31277943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apoptotic germ cells regulate Sertoli cell lipid storage and fatty acid oxidation.
    Regueira M; Gorga A; Rindone GM; Pellizzari EH; Cigorraga SB; Galardo MN; Riera MF; Meroni SB
    Reproduction; 2018 Dec; 156(6):515-525. PubMed ID: 30328346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations of the withered (whd) gene in Drosophila melanogaster confer hypersensitivity to oxidative stress and are lesions of the carnitine palmitoyltransferase I (CPT I) gene.
    Strub BR; Parkes TL; Mukai ST; Bahadorani S; Coulthard AB; Hall N; Phillips JP; Hilliker AJ
    Genome; 2008 Jun; 51(6):409-20. PubMed ID: 18521119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible origin of hydrocarbon/pheromone precursors in Drosophila melanogaster.
    Wicker-Thomas C; Garrido D; Bontonou G; Napal L; Mazuras N; Denis B; Rubin T; Parvy JP; Montagne J
    J Lipid Res; 2015 Nov; 56(11):2094-101. PubMed ID: 26353752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of Adipose Fatty Acid Oxidation Does Not Potentiate Obesity at Thermoneutrality.
    Lee J; Choi J; Aja S; Scafidi S; Wolfgang MJ
    Cell Rep; 2016 Feb; 14(6):1308-1316. PubMed ID: 26854223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycolytically impaired Drosophila glial cells fuel neural metabolism via β-oxidation.
    McMullen E; Hertenstein H; Strassburger K; Deharde L; Brankatschk M; Schirmeier S
    Nat Commun; 2023 May; 14(1):2996. PubMed ID: 37225684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels.
    Stefanovic-Racic M; Perdomo G; Mantell BS; Sipula IJ; Brown NF; O'Doherty RM
    Am J Physiol Endocrinol Metab; 2008 May; 294(5):E969-77. PubMed ID: 18349115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glial lipid droplets and neurodegeneration in a Drosophila model of complex I deficiency.
    Cabirol-Pol MJ; Khalil B; Rival T; Faivre-Sarrailh C; Besson MT
    Glia; 2018 Apr; 66(4):874-888. PubMed ID: 29285794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced hepatic fatty acid oxidation and upregulated carnitine palmitoyltransferase II gene expression by methyl 3-thiaoctadeca-6,9,12,15-tetraenoate in rats.
    Willumsen N; Vaagenes H; Rustan AC; Grav H; Lundquist M; Skattebøl L; Songstad J; Berge RK
    J Lipid Mediat Cell Signal; 1997 Nov; 17(2):115-34. PubMed ID: 9459137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid oxidation is required for active and quiescent brown adipose tissue maintenance and thermogenic programing.
    Gonzalez-Hurtado E; Lee J; Choi J; Wolfgang MJ
    Mol Metab; 2018 Jan; 7():45-56. PubMed ID: 29175051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peroxisomes contribute to the acylcarnitine production when the carnitine shuttle is deficient.
    Violante S; Ijlst L; Te Brinke H; Koster J; Tavares de Almeida I; Wanders RJ; Ventura FV; Houten SM
    Biochim Biophys Acta; 2013 Sep; 1831(9):1467-74. PubMed ID: 23850792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of triglyceride storage by a WD40/TPR-domain protein.
    Häder T; Müller S; Aguilera M; Eulenberg KG; Steuernagel A; Ciossek T; Kühnlein RP; Lemaire L; Fritsch R; Dohrmann C; Vetter IR; Jäckle H; Doane WW; Brönner G
    EMBO Rep; 2003 May; 4(5):511-6. PubMed ID: 12717455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resveratrol-Induced Changes in MicroRNA Expression in Primary Human Fibroblasts Harboring Carnitine-Palmitoyl Transferase-2 Gene Mutation, Leading to Fatty Acid Oxidation Deficiency.
    Aires V; Delmas D; Djouadi F; Bastin J; Cherkaoui-Malki M; Latruffe N
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29271911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-chain fatty acid oxidation during early human development.
    Oey NA; den Boer ME; Wijburg FA; Vekemans M; Augé J; Steiner C; Wanders RJ; Waterham HR; Ruiter JP; Attié-Bitach T
    Pediatr Res; 2005 Jun; 57(6):755-9. PubMed ID: 15845636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental regulation and localization of carnitine palmitoyltransferases (CPTs) in rat brain.
    Jernberg JN; Bowman CE; Wolfgang MJ; Scafidi S
    J Neurochem; 2017 Aug; 142(3):407-419. PubMed ID: 28512781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spen modulates lipid droplet content in adult Drosophila glial cells and protects against paraquat toxicity.
    Girard V; Goubard V; Querenet M; Seugnet L; Pays L; Nataf S; Dufourd E; Cluet D; Mollereau B; Davoust N
    Sci Rep; 2020 Nov; 10(1):20023. PubMed ID: 33208773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate specificity of human carnitine acetyltransferase: Implications for fatty acid and branched-chain amino acid metabolism.
    Violante S; Ijlst L; Ruiter J; Koster J; van Lenthe H; Duran M; de Almeida IT; Wanders RJ; Houten SM; Ventura FV
    Biochim Biophys Acta; 2013 Jun; 1832(6):773-9. PubMed ID: 23485643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.