These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25588846)

  • 1. Giant resonance tuning of micro and nanomechanical oscillators.
    Vitorino MV; Carpentier S; Panzarella A; Rodrigues MS; Costa L
    Sci Rep; 2015 Jan; 5():7818. PubMed ID: 25588846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving mechanical sensor performance through larger damping.
    Roy SK; Sauer VTK; Westwood-Bachman JN; Venkatasubramanian A; Hiebert WK
    Science; 2018 Jun; 360(6394):. PubMed ID: 29903939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of quartz tuning fork force sensors used in scanning probe microscopy.
    Castellanos-Gomez A; Agraït N; Rubio-Bollinger G
    Nanotechnology; 2009 May; 20(21):215502. PubMed ID: 19423931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable micro- and nanomechanical resonators.
    Zhang WM; Hu KM; Peng ZK; Meng G
    Sensors (Basel); 2015 Oct; 15(10):26478-566. PubMed ID: 26501294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator.
    Feng XL; White CJ; Hajimiri A; Roukes ML
    Nat Nanotechnol; 2008 Jun; 3(6):342-6. PubMed ID: 18654544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of a linear nanomechanical oscillator to its thermodynamic limit.
    Gavartin E; Verlot P; Kippenberg TJ
    Nat Commun; 2013; 4():2860. PubMed ID: 24326974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical backaction of microwave fields on a nanomechanical oscillator.
    Teufel JD; Harlow JW; Regal CA; Lehnert KW
    Phys Rev Lett; 2008 Nov; 101(19):197203. PubMed ID: 19113301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of frequency noise and frequency shift by phase shifting elements in frequency modulation atomic force microscopy.
    Kobayashi K; Yamada H; Matsushige K
    Rev Sci Instrum; 2011 Mar; 82(3):033702. PubMed ID: 21456746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bulk mode piezoresistive thermal oscillators: time constants and scaling.
    Sundaram S; Weinstein D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Aug; 62(8):1554-62. PubMed ID: 26276963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introduction of a co-resonant detection concept for mechanical oscillation-based sensors.
    Reiche CF; Körner J; Büchner B; Mühl T
    Nanotechnology; 2015 Aug; 26(33):335501. PubMed ID: 26222309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abatement of thermal noise due to internal damping in 2D oscillators with rapidly rotating test masses.
    Pegna R; Nobili AM; Shao M; Turyshev SG; Catastini G; Anselmi A; Spero R; Doravari S; Comandi GL; De Michele A
    Phys Rev Lett; 2011 Nov; 107(20):200801. PubMed ID: 22181717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum lock-in force sensing using optical clock Doppler velocimetry.
    Shaniv R; Ozeri R
    Nat Commun; 2017 Feb; 8():14157. PubMed ID: 28186103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable microwave resonators and oscillators using magnetostatic waves.
    Ishak WS; Kok-Wai C; Kunz WE; Miccoli G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):396-405. PubMed ID: 18290166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexural composite oscillators for the measurement of anelastic and elastic properties of solids at frequencies of 1 to 10 kHz.
    Devine SD; Robinson WH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):11-22. PubMed ID: 18244153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass Detection in Viscous Fluid Utilizing Vibrating Micro- and Nanomechanical Mass Sensors under Applied Axial Tensile Force.
    Stachiv I; Fang TH; Jeng YR
    Sensors (Basel); 2015 Aug; 15(8):19351-68. PubMed ID: 26287190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast Dynamical Coupling Enhances Frequency Adaptation of Oscillators for Robotic Locomotion Control.
    Nachstedt T; Tetzlaff C; Manoonpong P
    Front Neurorobot; 2017; 11():14. PubMed ID: 28377710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong coupling between single-electron tunneling and nanomechanical motion.
    Steele GA; Hüttel AK; Witkamp B; Poot M; Meerwaldt HB; Kouwenhoven LP; van der Zant HS
    Science; 2009 Aug; 325(5944):1103-7. PubMed ID: 19628816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant voltage-controlled modulation of spin Hall nano-oscillator damping.
    Fulara H; Zahedinejad M; Khymyn R; Dvornik M; Fukami S; Kanai S; Ohno H; Åkerman J
    Nat Commun; 2020 Aug; 11(1):4006. PubMed ID: 32782243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of time-delayed feedback on the properties of self-sustained oscillators.
    Risau-Gusman S
    Phys Rev E; 2016 Oct; 94(4-1):042212. PubMed ID: 27841595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband and wide-range feedback tuning scheme for phase-locked loop stabilization of tunable optoelectronic oscillators.
    Xu X; Dai J; Dai Y; Yin F; Zhou Y; Li J; Yin J; Wang Q; Xu K
    Opt Lett; 2015 Dec; 40(24):5858-61. PubMed ID: 26670530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.