These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25588879)

  • 41. Photocatalytic acceptorless alkane dehydrogenation: scope, mechanism, and conquering deactivation with carbon dioxide.
    Chowdhury AD; Julis J; Grabow K; Hannebauer B; Bentrup U; Adam M; Franke R; Jackstell R; Beller M
    ChemSusChem; 2015 Jan; 8(2):323-30. PubMed ID: 25346450
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Upgrading light hydrocarbons via tandem catalysis: a dual homogeneous Ta/Ir system for alkane/alkene coupling.
    Leitch DC; Lam YC; Labinger JA; Bercaw JE
    J Am Chem Soc; 2013 Jul; 135(28):10302-5. PubMed ID: 23799786
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of a-Alkylated Ketones via Tandem Acceptorless Dehydrogenation/a-Alkylation from Secondary and Primary Alcohols Catalyzed by Metal-Ligand Bifunctional Iridium Complex [Cp*Ir(2,2'-bpyO)(H2O)].
    Wang R; Ma J; Li F
    J Org Chem; 2015 Nov; 80(21):10769-76. PubMed ID: 26428210
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Iridium bis(phosphinite) p-XPCP pincer complexes: highly active catalysts for the transfer dehydrogenation of alkanes.
    Göttker-Schnetmann I; White P; Brookhart M
    J Am Chem Soc; 2004 Feb; 126(6):1804-11. PubMed ID: 14871112
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catalytic Acceptorless Dehydrogenation of Aliphatic Alcohols.
    Fuse H; Mitsunuma H; Kanai M
    J Am Chem Soc; 2020 Mar; 142(9):4493-4499. PubMed ID: 32057240
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catalytic C-C coupling via transfer hydrogenation: reverse prenylation, crotylation, and allylation from the alcohol or aldehyde oxidation level.
    Bower JF; Skucas E; Patman RL; Krische MJ
    J Am Chem Soc; 2007 Dec; 129(49):15134-5. PubMed ID: 18020342
    [No Abstract]   [Full Text] [Related]  

  • 47. Iridium Catalysts for Acceptorless Dehydrogenation of Alcohols to Carboxylic Acids: Scope and Mechanism.
    Cherepakhin V; Williams TJ
    ACS Catal; 2018 May; 8(5):3754-3763. PubMed ID: 30288338
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Manganese-Catalyzed Multicomponent Synthesis of Pyrroles through Acceptorless Dehydrogenation Hydrogen Autotransfer Catalysis: Experiment and Computation.
    Borghs JC; Azofra LM; Biberger T; Linnenberg O; Cavallo L; Rueping M; El-Sepelgy O
    ChemSusChem; 2019 Jul; 12(13):3083-3088. PubMed ID: 30589227
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An Azoaromatic Ligand as Four Electron Four Proton Reservoir: Catalytic Dehydrogenation of Alcohols by Its Zinc(II) Complex.
    Pramanick R; Bhattacharjee R; Sengupta D; Datta A; Goswami S
    Inorg Chem; 2018 Jun; 57(12):6816-6824. PubMed ID: 29863859
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pincer and diamine Ru and Os diphosphane complexes as efficient catalysts for the dehydrogenation of alcohols to ketones.
    Baratta W; Bossi G; Putignano E; Rigo P
    Chemistry; 2011 Mar; 17(12):3474-81. PubMed ID: 21341330
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Unexpected direct reduction mechanism for hydrogenation of ketones catalyzed by iron PNP pincer complexes.
    Yang X
    Inorg Chem; 2011 Dec; 50(24):12836-43. PubMed ID: 22103735
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Catalytic acceptorless dehydrogenations: Ru-Macho catalyzed construction of amides and imines.
    Oldenhuis NJ; Dong VM; Guan Z
    Tetrahedron; 2014 Jul; 70(27-28):4213-4218. PubMed ID: 26124536
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cobalt-catalyzed acceptorless alcohol dehydrogenation: synthesis of imines from alcohols and amines.
    Zhang G; Hanson SK
    Org Lett; 2013 Feb; 15(3):650-3. PubMed ID: 23311959
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols.
    Sordakis K; Tang C; Vogt LK; Junge H; Dyson PJ; Beller M; Laurenczy G
    Chem Rev; 2018 Jan; 118(2):372-433. PubMed ID: 28985048
    [TBL] [Abstract][Full Text] [Related]  

  • 55. System with potential dual modes of metal-ligand cooperation: highly catalytically active pyridine-based PNNH-Ru pincer complexes.
    Fogler E; Garg JA; Hu P; Leitus G; Shimon LJ; Milstein D
    Chemistry; 2014 Nov; 20(48):15727-31. PubMed ID: 25331061
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Acceptorless Alcohol Dehydrogenation Catalysed by Pd/C.
    Nicolau G; Tarantino G; Hammond C
    ChemSusChem; 2019 Nov; 12(22):4953-4961. PubMed ID: 31379122
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enantioselective carbonyl propargylation by iridium-catalyzed transfer hydrogenative coupling of alcohols and propargyl chlorides.
    Woo SK; Geary LM; Krische MJ
    Angew Chem Int Ed Engl; 2012 Jul; 51(31):7830-4. PubMed ID: 22736416
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dehydrogenation of n-Alkanes by Solid-Phase Molecular Pincer-Iridium Catalysts. High Yields of α-Olefin Product.
    Kumar A; Zhou T; Emge TJ; Mironov O; Saxton RJ; Krogh-Jespersen K; Goldman AS
    J Am Chem Soc; 2015 Aug; 137(31):9894-911. PubMed ID: 26200219
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis.
    Gunanathan C; Milstein D
    Science; 2013 Jul; 341(6143):1229712. PubMed ID: 23869021
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Acceptorless Dehydrogenation of N-Heterocycles by Merging Visible-Light Photoredox Catalysis and Cobalt Catalysis.
    He KH; Tan FF; Zhou CZ; Zhou GJ; Yang XL; Li Y
    Angew Chem Int Ed Engl; 2017 Mar; 56(11):3080-3084. PubMed ID: 28156039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.