These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 25588912)

  • 1. Skilled forelimb movements and internal copy motor circuits.
    Azim E; Alstermark B
    Curr Opin Neurobiol; 2015 Aug; 33():16-24. PubMed ID: 25588912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skilled reaching relies on a V2a propriospinal internal copy circuit.
    Azim E; Jiang J; Alstermark B; Jessell TM
    Nature; 2014 Apr; 508(7496):357-63. PubMed ID: 24487617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal and External Feedback Circuits for Skilled Forelimb Movement.
    Azim E; Fink AJ; Jessell TM
    Cold Spring Harb Symp Quant Biol; 2014; 79():81-92. PubMed ID: 25699987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A functional map for diverse forelimb actions within brainstem circuitry.
    Ruder L; Schina R; Kanodia H; Valencia-Garcia S; Pivetta C; Arber S
    Nature; 2021 Feb; 590(7846):445-450. PubMed ID: 33408409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the origin of skilled forelimb movements.
    Iwaniuk AN; Whishaw IQ
    Trends Neurosci; 2000 Aug; 23(8):372-6. PubMed ID: 10906801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EphA4 Is Required for Neural Circuits Controlling Skilled Reaching.
    Jiang J; Kullander K; Alstermark B
    J Neurosci; 2020 Sep; 40(37):7091-7104. PubMed ID: 32801149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor systems: reaching out and grasping the molecular tools.
    Zhou K; Wolpert DM; De Zeeuw CI
    Curr Biol; 2014 Mar; 24(7):R269-71. PubMed ID: 24698373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skilled forelimb movements in prey catching and in reaching by rats (Rattus norvegicus) and opossums (Monodelphis domestica): relations to anatomical differences in motor systems.
    Ivanco TL; Pellis SM; Whishaw IQ
    Behav Brain Res; 1996 Sep; 79(1-2):163-81. PubMed ID: 8883828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebellar Modulation of Cortically Evoked Complex Movements in Rats.
    Viaro R; Bonazzi L; Maggiolini E; Franchi G
    Cereb Cortex; 2017 Jul; 27(7):3525-3541. PubMed ID: 27329134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct Functional Modules for Discrete and Rhythmic Forelimb Movements in the Mouse Motor Cortex.
    Hira R; Terada S; Kondo M; Matsuzaki M
    J Neurosci; 2015 Sep; 35(39):13311-22. PubMed ID: 26424880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and plasticity of complex movement representations.
    Singleton AC; Brown AR; Teskey GC
    J Neurophysiol; 2021 Feb; 125(2):628-637. PubMed ID: 33471611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal maturation of the red nucleus motor map depends on rubrospinal connections with forelimb motor pools.
    Williams PT; Kim S; Martin JH
    J Neurosci; 2014 Mar; 34(12):4432-41. PubMed ID: 24647962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cineradiographic (video X-ray) analysis of skilled reaching in a single pellet reaching task provides insight into relative contribution of body, head, oral, and forelimb movement in rats.
    Alaverdashvili M; Leblond H; Rossignol S; Whishaw IQ
    Behav Brain Res; 2008 Oct; 192(2):232-47. PubMed ID: 18514337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of electrical thresholds for evoking movements from sensori-motor areas of the cat cerebral cortex and its relation to motor training.
    Ghosh S; Koh AH; Ring A
    Somatosens Mot Res; 2004 Jun; 21(2):99-115. PubMed ID: 15370091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Cerebellar Nuclei and Dexterous Limb Movements.
    Thanawalla AR; Chen AI; Azim E
    Neuroscience; 2020 Dec; 450():168-183. PubMed ID: 32652173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disengagement of Motor Cortex during Long-Term Learning Tracks the Performance Level of Learned Movements.
    Hwang EJ; Dahlen JE; Mukundan M; Komiyama T
    J Neurosci; 2021 Aug; 41(33):7029-7047. PubMed ID: 34244359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Interposed Anterior Nucleus.
    Low AYT; Thanawalla AR; Yip AKK; Kim J; Wong KLL; Tantra M; Augustine GJ; Chen AI
    Cell Rep; 2018 Feb; 22(9):2322-2333. PubMed ID: 29490269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct cortical circuit mechanisms for complex forelimb movement and motor map topography.
    Harrison TC; Ayling OG; Murphy TH
    Neuron; 2012 Apr; 74(2):397-409. PubMed ID: 22542191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypothalamic Control of Forelimb Motor Adaptation.
    Donegan D; Kanzler CM; Büscher J; Viskaitis P; Bracey EF; Lambercy O; Burdakov D
    J Neurosci; 2022 Aug; 42(32):6243-6257. PubMed ID: 35790405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Layer 5 Intratelencephalic Neurons in the Motor Cortex Stably Encode Skilled Movement.
    Shinotsuka T; Tanaka YR; Terada SI; Hatano N; Matsuzaki M
    J Neurosci; 2023 Oct; 43(43):7130-7148. PubMed ID: 37699714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.