These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25588923)

  • 1. Two-photon imaging with longer wavelength excitation in intact Arabidopsis tissues.
    Mizuta Y; Kurihara D; Higashiyama T
    Protoplasma; 2015 Sep; 252(5):1231-40. PubMed ID: 25588923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Two-Photon Imaging in Plants.
    Mizuta Y
    Plant Cell Physiol; 2021 Nov; 62(8):1224-1230. PubMed ID: 34019083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging.
    Kurihara D; Mizuta Y; Sato Y; Higashiyama T
    Development; 2015 Dec; 142(23):4168-79. PubMed ID: 26493404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtosecond near-infrared lasers as a novel tool for non-invasive real-time high-resolution time-lapse imaging of chloroplast division in living bundle sheath cells of Arabidopsis.
    Tirlapur UK; König K
    Planta; 2001 Nov; 214(1):1-10. PubMed ID: 11762158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms.
    Neu TR; Kuhlicke U; Lawrence JR
    Appl Environ Microbiol; 2002 Feb; 68(2):901-9. PubMed ID: 11823234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous Two- and Three-Photon Deep Imaging of Autofluorescence in Bacterial Communities.
    Fernández A; Classen A; Josyula N; Florence JT; Sokolov AV; Scully MO; Straight P; Verhoef AJ
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiphoton confocal microscopy using a femtosecond Cr:forsterite laser.
    Liu TM; Chu SW; Sun CK; Lin BL; Cheng PC; Johnson I
    Scanning; 2001; 23(4):249-54. PubMed ID: 11534811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging plant cells by two-photon excitation.
    Feijó JA; Moreno N
    Protoplasma; 2004 Mar; 223(1):1-32. PubMed ID: 15004740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Second harmonic generation imaging of the deep shade plant Selaginella erythropus using multifunctional two-photon laser scanning microscopy.
    Reshak AH; Sheue CR
    J Microsc; 2012 Dec; 248(3):234-44. PubMed ID: 23062103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autofluorescence spectroscopy and imaging of Platymonas subcordiformis irradiated by diode laser based on LSCM.
    Huang Z; Chen R; Li Y; Zhuang H; Chen J; Wang L
    Scanning; 2008; 30(6):443-7. PubMed ID: 18752217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo monitoring of intracellular chloroplast movements in intact leaves of C4 plants using two-photon microscopy.
    Ryu J; Nam H; Kim HK; Joo Y; Lee SJ; Kim KH
    Microsc Res Tech; 2014 Oct; 77(10):806-13. PubMed ID: 25044459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of plastid number, size, and distribution in Arabidopsis plants by light and fluorescence microscopy.
    Pyke K
    Methods Mol Biol; 2011; 774():19-32. PubMed ID: 21822830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain.
    Hontani Y; Xia F; Xu C
    Sci Adv; 2021 Mar; 7(12):. PubMed ID: 33731355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiphoton excitation microscopy of in vivo human skin. Functional and morphological optical biopsy based on three-dimensional imaging, lifetime measurements and fluorescence spectroscopy.
    Masters BR; So PT; Gratton E
    Ann N Y Acad Sci; 1998 Feb; 838():58-67. PubMed ID: 9511795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective excitation of photosystems in chloroplasts inside plant leaves observed by near-infrared laser-based fluorescence spectral microscopy.
    Hasegawa M; Shiina T; Terazima M; Kumazaki S
    Plant Cell Physiol; 2010 Feb; 51(2):225-38. PubMed ID: 20022977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Fluorescence spectra and imaging of Platymonas subcordiformis via LSCM].
    Chen GN; Huang ZF; Chen R; Lin JQ; Chen JX; Yang KT; Zhuang HR; Wang LJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Sep; 29(9):2330-3. PubMed ID: 19950622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy.
    Maizel A; von Wangenheim D; Federici F; Haseloff J; Stelzer EH
    Plant J; 2011 Oct; 68(2):377-85. PubMed ID: 21711399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and application of intercellular Ca2+-sensitive fluorescent probe based on quantum dots.
    Xia J; Yu Y; Liao Q; Cao Y; Lin B; Hu X; Wu J
    J Inorg Biochem; 2013 Jan; 118():39-47. PubMed ID: 23123337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of HyPer to examine spatial and temporal changes in H2O2 in high light-exposed plants.
    Exposito-Rodriguez M; Laissue PP; Littlejohn GR; Smirnoff N; Mullineaux PM
    Methods Enzymol; 2013; 527():185-201. PubMed ID: 23830632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of plastids in pollen grains: involvement of FtsZ1 in pollen plastid division.
    Tang LY; Nagata N; Matsushima R; Chen Y; Yoshioka Y; Sakamoto W
    Plant Cell Physiol; 2009 Apr; 50(4):904-8. PubMed ID: 19282372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.