These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25588960)

  • 1. Molecular recognition in protein modification with rhodium metallopeptides.
    Ball ZT
    Curr Opin Chem Biol; 2015 Apr; 25():98-102. PubMed ID: 25588960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing enzyme-like catalysts: a rhodium(II) metallopeptide case study.
    Ball ZT
    Acc Chem Res; 2013 Feb; 46(2):560-70. PubMed ID: 23210518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence-specific inhibition of a designed metallopeptide catalyst.
    Popp BV; Chen Z; Ball ZT
    Chem Commun (Camb); 2012 Aug; 48(60):7492-4. PubMed ID: 22728748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic protein modification with dirhodium metallopeptides: specificity in designed and natural systems.
    Chen Z; Vohidov F; Coughlin JM; Stagg LJ; Arold ST; Ladbury JE; Ball ZT
    J Am Chem Soc; 2012 Jun; 134(24):10138-45. PubMed ID: 22621321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Hexa-rhodium Metallopeptide Catalyst for Site-Specific Functionalization of Natural Antibodies.
    Ohata J; Ball ZT
    J Am Chem Soc; 2017 Sep; 139(36):12617-12622. PubMed ID: 28810739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Posttranslational Modification with Designed Rhodium(II) Catalysts.
    Martin SC; Minus MB; Ball ZT
    Methods Enzymol; 2016; 580():1-19. PubMed ID: 27586326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme Activity by Design: An Artificial Rhodium Hydroformylase for Linear Aldehydes.
    Jarvis AG; Obrecht L; Deuss PJ; Laan W; Gibson EK; Wells PP; Kamer PCJ
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13596-13600. PubMed ID: 28841767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodium(II) metallopeptide catalyst design enables fine control in selective functionalization of natural SH3 domains.
    Vohidov F; Coughlin JM; Ball ZT
    Angew Chem Int Ed Engl; 2015 Apr; 54(15):4587-91. PubMed ID: 25688989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Helix induction by dirhodium: access to biocompatible metallopeptides with defined secondary structure.
    Zaykov AN; Popp BV; Ball ZT
    Chemistry; 2010 Jun; 16(22):6651-9. PubMed ID: 20411535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial metalloenzymes via encapsulation of hydrophobic transition-metal catalysts in surface-crosslinked micelles (SCMs).
    Zhang S; Zhao Y
    Chem Commun (Camb); 2012 Oct; 48(80):9998-10000. PubMed ID: 22935642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyol recognition in catalysis: toward selective modification of glycosylated polypeptides with boronic acid-rhodium(II) catalysts.
    Vargas RD; Ding Y; Trial HO; Qian R; Ball ZT
    Chem Commun (Camb); 2023 Oct; 59(87):13030-13033. PubMed ID: 37842954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing Selectivity in Dirhodium Metallopeptide Catalysts for Protein Modification.
    Martin SC; Vohidov F; Wang H; Knudsen SE; Marzec AA; Ball ZT
    Bioconjug Chem; 2017 Feb; 28(2):659-665. PubMed ID: 28035818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening rhodium metallopeptide libraries "on bead": asymmetric cyclopropanation and a solution to the enantiomer problem.
    Sambasivan R; Ball ZT
    Angew Chem Int Ed Engl; 2012 Aug; 51(34):8568-72. PubMed ID: 22777868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-selective modification of aromatic side chains with dirhodium metallopeptide catalysts.
    Popp BV; Ball ZT
    J Am Chem Soc; 2010 May; 132(19):6660-2. PubMed ID: 20420453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling peptide structure with coordination chemistry: robust and reversible peptide-dirhodium ligation.
    Zaykov AN; MacKenzie KR; Ball ZT
    Chemistry; 2009 Sep; 15(36):8961-5. PubMed ID: 19637261
    [No Abstract]   [Full Text] [Related]  

  • 16. Determination of orientational isomerism in rhodium(II) metallopeptides by pyrene fluorescence.
    Sambasivan R; Ball ZT
    Org Biomol Chem; 2012 Oct; 10(41):8203-6. PubMed ID: 23001352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-selective modification of peptides using rhodium and palladium catalysis: complementary electrophilic and nucleophilic arylation.
    Chapman CJ; Matsuno A; Frost CG; Willis MC
    Chem Commun (Camb); 2007 Oct; (38):3903-5. PubMed ID: 17896027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective rhodium-catalyzed reduction of tertiary amides in amino acid esters and peptides.
    Das S; Li Y; Bornschein C; Pisiewicz S; Kiersch K; Michalik D; Gallou F; Junge K; Beller M
    Angew Chem Int Ed Engl; 2015 Oct; 54(42):12389-93. PubMed ID: 26189442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies of asymmetric styrene cyclopropanation with a rhodium(II) metallopeptide catalyst developed with a high-throughput screen.
    Sambasivan R; Ball ZT
    Chirality; 2013 Sep; 25(9):493-7. PubMed ID: 23749505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular bidentate ligands by metal-directed in situ formation of antiparallel beta-sheet structures and application in asymmetric catalysis.
    Laungani AC; Slattery JM; Krossing I; Breit B
    Chemistry; 2008; 14(15):4488-502. PubMed ID: 18449870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.