These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25589141)

  • 1. Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning.
    Bao L; Liu C; Zhang ZL; Pang DW
    Adv Mater; 2015 Mar; 27(10):1663-7. PubMed ID: 25589141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism.
    Bao L; Zhang ZL; Tian ZQ; Zhang L; Liu C; Lin Y; Qi B; Pang DW
    Adv Mater; 2011 Dec; 23(48):5801-6. PubMed ID: 22144369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrothermal green synthesis of magnetic Fe
    Ahmadian-Fard-Fini S; Salavati-Niasari M; Ghanbari D
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():481-493. PubMed ID: 29898431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic studies on the reversible photophysical properties of carbon nanodots at different pH.
    Xu ZQ; Lan JY; Jin JC; Gao T; Pan LL; Jiang FL; Liu Y
    Colloids Surf B Biointerfaces; 2015 Jun; 130():207-14. PubMed ID: 25910636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical regulation of carbon quantum dots from synthesis to photocatalytic activity.
    Hu S; Tian R; Wu L; Zhao Q; Yang J; Liu J; Cao S
    Chem Asian J; 2013 May; 8(5):1035-41. PubMed ID: 23441085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fluorescence-electrochemical study of carbon nanodots (CNDs) in bio- and photoelectronic applications and energy gap investigation.
    Zeng Z; Zhang W; Arvapalli DM; Bloom B; Sheardy A; Mabe T; Liu Y; Ji Z; Chevva H; Waldeck DH; Wei J
    Phys Chem Chem Phys; 2017 Aug; 19(30):20101-20109. PubMed ID: 28726895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning photoluminescence and surface properties of carbon nanodots for chemical sensing.
    Zhang Z; Pan Y; Fang Y; Zhang L; Chen J; Yi C
    Nanoscale; 2016 Jan; 8(1):500-7. PubMed ID: 26676688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source.
    Tan M; Zhang L; Tang R; Song X; Li Y; Wu H; Wang Y; Lv G; Liu W; Ma X
    Talanta; 2013 Oct; 115():950-6. PubMed ID: 24054687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiway data analysis approach toward understanding of photoluminescence and energy transfer in carbon nanodots.
    Bagheri S; Kompany-Zareh M; Karimpour T
    Luminescence; 2020 May; 35(3):385-392. PubMed ID: 31896165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-enhanced photoluminescence from carbon nanodots.
    Zhang Y; Gonçalves H; da Silva JC; Geddes CD
    Chem Commun (Camb); 2011 May; 47(18):5313-5. PubMed ID: 21461418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super-Resolution Optical Fluctuation Bio-Imaging with Dual-Color Carbon Nanodots.
    Chizhik AM; Stein S; Dekaliuk MO; Battle C; Li W; Huss A; Platen M; Schaap IA; Gregor I; Demchenko AP; Schmidt CF; Enderlein J; Chizhik AI
    Nano Lett; 2016 Jan; 16(1):237-42. PubMed ID: 26605640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable multicolor carbon dots prepared from well-defined polythiophene derivatives and their emission mechanism.
    Guo L; Ge J; Liu W; Niu G; Jia Q; Wang H; Wang P
    Nanoscale; 2016 Jan; 8(2):729-34. PubMed ID: 26660629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Luminescence of lemon-derived carbon quantum dot and its potential application in luminescent probe for detection of Mo
    Hoan BT; Van Huan P; Van HN; Nguyen DH; Tam PD; Nguyen KT; Pham VH
    Luminescence; 2018 May; 33(3):545-551. PubMed ID: 29316170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-based route to ligand-selective synthesis of ZnSe and Cd-doped ZnSe quantum dots with tunable ultraviolet A to blue photoluminescence.
    Deng Z; Lie FL; Shen S; Ghosh I; Mansuripur M; Muscat AJ
    Langmuir; 2009 Jan; 25(1):434-42. PubMed ID: 19053829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and photoluminescence of ZnS quantum dots.
    Wang YH; Chen Z; Zhou XQ
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1312-5. PubMed ID: 18468145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From metal-organic framework to intrinsically fluorescent carbon nanodots.
    Amali AJ; Hoshino H; Wu C; Ando M; Xu Q
    Chemistry; 2014 Jul; 20(27):8279-82. PubMed ID: 24889063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of carbon quantum dots based on starch and their spectral properties.
    Yan Z; Shu J; Yu Y; Zhang Z; Liu Z; Chen J
    Luminescence; 2015 Jun; 30(4):388-92. PubMed ID: 25044549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating Quantum Confinement in Graphene Oxide Dots Based On Excitation-Wavelength-Independent Photoluminescence.
    Yeh TF; Huang WL; Chung CJ; Chiang IT; Chen LC; Chang HY; Su WC; Cheng C; Chen SJ; Teng H
    J Phys Chem Lett; 2016 Jun; 7(11):2087-92. PubMed ID: 27192445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High photoluminescence quantum yield of TiO2 nanocrystals prepared using an alcohothermal method.
    Li Y; Song C; Wang Y; Wei Y; Wei Y; Hu Y
    Luminescence; 2007; 22(6):540-5. PubMed ID: 17768709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon quantum dots: recent progresses on synthesis, surface modification and applications.
    Farshbaf M; Davaran S; Rahimi F; Annabi N; Salehi R; Akbarzadeh A
    Artif Cells Nanomed Biotechnol; 2018 Nov; 46(7):1331-1348. PubMed ID: 28933188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.